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1. Introduction

Initially, étale cohomology of a scheme X only works well for sheaves with torsion 
coefficients, such as Z/n. In order to have a cohomology theory producing vector spaces 
over characteristic zero fields, one fixes a prime number � and uses �-adic sheaves [32, 
Exposé VI] whose cohomology groups are Q�-vector spaces. The name “sheaves” is fully 
justified with the advent of the proétale topology introduced in [8]: such �-adic sheaves 
are ordinary topos-theoretic sheaves on the site Xproét. This is decidedly more conceptual 
than the classical approach which builds �-adic sheaves by retracing the formula Q� =
(limn Z/�n)[�−1] on the level of sheaves.

For many purposes, it is useful to impose a finiteness condition on sheaves known as 
constructibility. This is accomplished in [8] for adic coefficient rings like Z� = limZ/�n. 
Their category satisfies proétale descent and compares well to [32,13,16]. If the under-
lying topological space of X is Noetherian, [8] also defines a category of constructible 
Q�-sheaves. However, the finiteness condition on X prevents one from formulating de-
scent on Xproét: typical proétale covers {Ui → X} have a profinite set of connected 
components and so are not topologically Noetherian. Examples show that the notion of 
proétale locally constant sheaves is not well behaved in general. This prevents an obvious 
generalization of constructible Q�-sheaves to such large schemes.

Here we introduce a notion of lisse and constructible sheaves on arbitrary schemes X
with coefficients in an arbitrary condensed (unital, commutative) ring Λ. Recall from [11]
(see also [3]) that a condensed ring is a sheaf of rings on the site ∗proét of profinite sets. 
Examples abound, since every T1-topological ring naturally gives rise to a condensed 
ring via the Yoneda embedding. Let Λ∗ = Γ(∗, Λ) be the underlying ring.

The pullback of Λ along the canonical map of sites Xproét → ∗proét is a sheaf of rings 
on Xproét. We denote by D(X, Λ) the derived ∞-category of the abelian category of 
Λ-sheaves on Xproét. This is a Λ∗-linear symmetric monoidal closed stable ∞-category 
(so its homotopy category is a triangulated category). Recall the notion of dualizable 
objects in symmetric monoidal categories [28, Section 4.6.1]. For example, for any ring 
R, the dualizable objects in ModR, the derived ∞-category of R-modules, are the perfect 
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complexes, that is, bounded complexes of finite projective R-modules. This subcategory 
is denoted by PerfR ⊂ ModR.

Definition 1.1. Let X be a scheme, and let Λ be a condensed ring.

(1) A sheaf M ∈ D(X, Λ) is called lisse if it is dualizable.
(2) A sheaf M ∈ D(X, Λ) is called constructible if for every open affine subscheme U ⊂ X

there exists a finite subdivision Ui ⊂ U into constructible locally closed subschemes 
such that each M |Ui

is lisse.

We denote by Dlis(X, Λ) ⊂ Dcons(X, Λ) the full subcategories of D(X, Λ) of lisse, 
respectively constructible sheaves. By the setup, these are naturally Λ∗-linear symmetric 
monoidal stable ∞-categories.

The idea that the lisse-ness condition on a sheaf can be expressed by means of dual-
izability is known, for example, in the context of motives or étale torsion sheaves [10], 
but seems to be new for coefficients such as Λ = Q� or Z�. The present paper offers the 
insight that this highly conceptual finiteness notion is also computationally manageable 
in the proétale topology. The following lemma is the key stepping stone making this 
possible. Recall that every scheme admits a proétale cover {Ui → X} where the Ui are 
w-contractible affine schemes. These objects form a basis of the topology on Xproét [8, 
Theorem 1.5].

Lemma 1.2 (Lemma 4.1). Assume that X is w-contractible affine. Then the global sections 
functor induces an equivalence of ∞-categories

RΓ(X, -) : Dlis(X,Λ)
∼=−→ PerfΓ(X,Λ).

Even for X = ∗ and Λ = Z, this is noteworthy: the derived ∞-category of condensed 
abelian groups D(∗, Z) contains fully faithfully the category of compactly generated T1-
topological abelian groups, and is thus much larger than the ∞-category Dlis(∗, Z) ∼=
PerfZ, which consists of bounded complexes of finitely generated free abelian groups 
equipped with the discrete topology.

Lemma 1.3 (Corollary 4.7). The functors U �→ Dlis(U, Λ), Dcons(U, Λ) are hypersheaves 
of ∞-categories on Xproét.

Together with Lemma 1.2, this says that U �→ Dlis(U, Λ) is the unique hypersheaf 
on Xproét whose values at the basis of w-contractible affines compute the ∞-category 
PerfΓ(U,Λ). It can be used to relate lisse sheaves to the condensed shape (Proposition A.1), 
also known as the proétale homotopy type, which is related to the stratified shape de-
veloped in [2]. The above functors are even sheaves in the arc topology [6] for favorable 
choices of Λ such as finite discrete rings, algebraic extensions E ⊃ Q� and their rings of 
integers OE , see [22, Theorem 2.2].
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By the above definition, lisse and constructible sheaves start out life in a derived 
setting. The natural t-structure on D(X, Λ) restricts to a t-structure on such sheaves 
only under additional assumptions on X and Λ:

Definition 1.4. A condensed ring Λ is called t-admissible if Λ∗ is regular coherent (that 
is, every finitely generated ideal is finitely presented and has finite projective dimension) 
and, for any extremally disconnected profinite set S, the map Λ∗ → Γ(S, Λ) is flat.

In Section 6, we show that Λ is t-admissible if and only if the t-structure on D(∗, Λ)
restricts a t-structure on Dlis(∗, Λ). Examples of t-admissible condensed rings include 
discrete rings that are regular Noetherian, and all T1-topological rings such that Λ∗ is 
semi-hereditary (=every finitely generated ideal is projective). This covers algebraic field 
extensions E ⊃ Q� and their rings of integers OE, but also the real and complex numbers 
R, C with their Euclidean topology and the ring of adeles AT

K prime to some finite set 
of places T in some number field K.

Theorem 1.5 (Theorem 6.2). Let Λ be a t-admissible condensed ring.

• If X has Zariski-locally finitely many irreducible components, then the natural t-
structure on D(X, Λ) restricts to a t-structure on Dlis(X, Λ).

• If every constructible subset of X has locally finitely many irreducible components, 
then the natural t-structure on D(X, Λ) restricts to a t-structure on Dcons(X, Λ).

The topological condition on X is satisfied if X is locally Noetherian. According to 
Remark 6.4, some topological assumption on X is necessary for Dlis(X, Q�) to be stable 
under truncation. The following result allows for the comparison with the notions of lisse 
and constructible sheaves as in [12,32,13,16,8,33,18]:

Theorem 1.6. Let X be a scheme, and let Λ be a condensed ring.

(1) (Proposition 7.1) For a discrete topological ring Λ, the ∞-category Dlis(X, Λ) is equiv-
alent to the full subcategory of D(Xét, Λ) of complexes that are étale-locally perfect 
complexes of Λ∗-modules. Consequently, Dcons(X, Λ) is equivalent to the resulting 
category of étale constructible sheaves of Λ-modules.

(2) (Proposition 5.1) Assume that Λ = lim Λn is a sequential limit of condensed rings 
such that the transition maps are surjective with locally nilpotent kernel. Then there 
are natural equivalences

Dlis(X,Λ)
∼=−→ lim Dlis(X,Λn) and

Dcons(X,Λ)
∼=−→ lim Dcons(X,Λn).
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(3) (Proposition 5.5) Assume that T ⊂ Λ∗ is a multiplicatively closed subset. If X is 
quasi-compact and quasi-separated (qcqs), then the natural functors

Dlis(X,Λ) ⊗PerfΛ∗
PerfT−1Λ∗ → Dlis

(
X,T−1Λ

)
and

Dcons(X,Λ) ⊗PerfΛ∗
PerfT−1Λ∗ → Dcons

(
X,T−1Λ

)

are fully faithful.
(4) (Proposition 5.2) Assume that Λ = colim Λi is a filtered colimit of condensed rings. 

If X is qcqs, there are natural equivalences

colim Dlis(X,Λi)
∼=−→ Dlis(X,Λ) and

colim Dcons(X,Λi)
∼=−→ Dcons(X,Λ).

(5) (Theorem 4.13) Assume that X has locally a finite number of irreducible components. 
Then M ∈ D(X, Λ) is lisse if and only if M is locally on Xproét isomorphic to 
N ⊗Λ∗ ΛX for some perfect complex of Λ∗-modules N , where the underline denotes 
the associated constant sheaf on Xproét.

Part (2) applies to adic topological rings Λ = lim Λ/In such as the �-adic integers 
Z� = limZ/�n. The key computation for the ∞-categories of perfect complexes is [4, 
Lemma 4.2]. Together with (1), this also shows that Dcons(X, Λ) is equivalent to the full 
subcategory of D(X, Λ) of I-adically complete objects M such that M ⊗ Λ/I is étale 
constructible as in [8, Section 6]. For algebraic field extensions E ⊃ Q�, one easily de-
duces from (5) that the categories Dcons(X, E), Dcons(X, OE) agree with the categories 
defined in [8, Definition 6.8.8] whenever X is topologically Noetherian. See, however, Ex-
ample 3.6 for a lisse sheaf on a profinite set that is not proétale-locally perfect-constant. 
In conclusion, the above result extends the previously known approaches.

The functor in (3) is not an equivalence for lisse sheaves in general. This relates to 
the difference between the étale versus the proétale fundamental group, see Remark 5.7
and also Theorem 7.7 for a positive result for constructible sheaves. Part (4) gives the 
comparison of the ∞-category of constructible sheaves with coefficients in Q̄� = colimE

or Z̄� = colimOE where the colimits run through finite field extensions E ⊃ Q�.
Another application of the formalism presented in this work is the realization of 

ind-constructible sheaf contexts as categories of sheaves. In algebraic geometry and geo-
metric representation theory, it has been custumary and sometimes necessary to consider 
categories of inductive systems of constructible (or lisse) complexes [25,17,1]. For qcqs 
schemes X of finite Λ-cohomological dimension (see Section 8 for details), we introduce 
the following notion:

Definition 1.7. A sheaf M ∈ D(X, Λ) is called ind-lisse, respectively ind-constructible if 
it is equivalent to a filtered colimit of lisse, respectively constructible sheaves.
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We denote by Dindlis(X, Λ) ⊂ Dindcons(X, Λ) the resulting full subcategories of 
D(X, Λ). These ∞-categories satisfy étale descent, see Corollary 8.7. Examples of pairs 
(X, Λ) satisfying the cohomological finiteness assumption include schemes X of finite 
type over finite and separably closed fields with coefficients Λ being a discrete torsion 
ring, an algebraic field extension E ⊃ Q�, or its ring of integers OE , see Lemma 8.6. For 
such pairs, we can realize categories of inductive systems as full subcategories of sheaves 
on the proétale site.

Proposition 1.8 (Proposition 8.2, Corollary 8.3). Let X be a qcqs scheme of finite Λ-
cohomological dimension. Then an object M ∈ Dindcons(X, Λ) is compact if and only if 
M is constructible, and likewise for (ind-)lisse sheaves. Consequently, the Ind-completion 
functor induces equivalences

Ind
(
Dlis(X,Λ)

) ∼=−→ Dindlis(X,Λ) and

Ind
(
Dcons(X,Λ)

) ∼=−→ Dindcons(X,Λ).

Combined with Theorem 1.6 (1) and [8, Section 6.4], the proposition shows that 
Dindcons(X, Λ) ∼= D(Xét, Λ) for discrete rings Λ and qcqs schemes X of finite Λ-
cohomological dimension.

Remark 1.9. Another motivation for this work is the �-adic realization functor for mo-
tives. As explained in [10], this functor is in essence a completion functor. It seems 
an interesting question whether it can be expressed as a scalar extension functor for a 
yet-to-be-defined category of motives with condensed coefficients.

Acknowledgments We thank Kȩstutis Česnavičius, Ofer Gabber, Peter Scholze, Evgenij 
Vechtomov and Torsten Wedhorn for helpful conversations and email exchanges. The 
second named author (T. R.) thanks all participants of the GAUS seminar on Condensed 
Mathematics in the winter term 2020/2021. We heartily thank an anonymous referee for 
their extremely insightful report on our paper.

2. Prelude on ∞-categories

Throughout this section, Λ denotes a unital, commutative ring. We briefly collect 
some notation pertaining to ∞-categories from [28,27]. As in [27, Section 5.5.3], PrL

denotes the ∞-category of presentable ∞-categories with colimit-preserving functors. It 
contains the subcategory PrSt ⊂ PrL consisting of stable ∞-categories. Below, we also 
use the Ind-completion functor (defined on the ∞-category of idempotent complete small 
stable ∞-categories and exact functors, taking values in compactly generated presentable 
∞-categories) and the functor forgetting the compact generatedness [28, Lemma 5.3.2.9]

Catperf
∞

Ind−→PrSt
ω −→ PrSt. (2.1)
∼=
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2.1. Monoidal aspects

The ∞-category PrL carries the Lurie tensor product [28, Section 4.8.1]. This tensor 
product induces one on the full subcategory PrSt ⊂ PrL consisting of stable ∞-categories 
[28, Proposition 4.8.2.18]. For our commutative ring Λ, the ∞-category ModΛ of chain 
complexes of Λ-modules, up to quasi-isomorphism, is a commutative monoid in PrSt with 
respect to this tensor product. This structure includes, in particular, the existence of a 
functor

ModΛ × ModΛ → ModΛ

which, after passing to the homotopy categories is the classical derived tensor product 
on the unbounded derived ∞-category of Λ-modules.

We define PrSt
Λ to be the category of modules, in PrSt, over ModΛ. This ∞-category is 

denoted DGCatcont,Λ in [20, Chapter 1, Section 10.3], and we will freely use results from 
there. Noting that modules over ModΛ are in particular modules over Sp, the ∞-category 
of spectra, this can be described as the ∞-category consisting of stable presentable ∞-
categories together with a Λ-linear structure, and such that functors are continuous and 
Λ-linear. Therefore PrSt

Λ carries a symmetric monoidal structure, whose unit is ModΛ.
In order to express monoidal properties of ∞-categories consisting, say, of bounded 

complexes, recall that the tensor product of compactly generated ∞-categories is again
compactly generated [28, Lemma 5.3.2.11]. In addition, if f∗, g∗ are functors between 
such ∞-categories preserving compact objects, their right adjoints f∗ and g∗ preserve 
filtered colimits, and hence so does f∗⊗g∗, which is the right adjoint of f∗⊗g∗. Thus the 
latter preserves compact objects. The symmetric monoidal structure on PrSt therefore 
restricts to one on PrSt

ω . By [28, Corollary 4.8.1.4] or [9, Proposition 4.4] there is a 
symmetric monoidal structure on Catperf

∞ characterized by

D1 ⊗D2
def=

(
Ind(D1) ⊗ Ind(D2)

)ω
, (2.2)

that is, the compact objects in the Lurie tensor product of the Ind-completions. With 
respect to these monoidal structures, both functors in (2.1) are symmetric monoidal.

The subcategory of compact objects in ModΛ is given by perfect complexes of Λ-
modules [28, Proposition 7.2.4.2.]. It is denoted PerfΛ. Under the equivalence in (2.1), 
the ∞-category PerfΛ ∈ Catperf

∞ corresponds to ModΛ. Moreover, PerfΛ is a commutative 
monoid in Catperf

∞ , so that we can consider its category of modules, denoted as Catperf
∞,Λ. 

This ∞-category inherits a symmetric monoidal structure denoted by D1 ⊗PerfΛ D2.
Any stable ∞-category D is canonically enriched over the ∞-category of spectra Sp. 

We write HomD(−, −) for the mapping spectrum. Any object in PrSt
Λ is canonically 

enriched over ModΛ, so that we refer to HomD(−, −) ∈ ModΛ as the mapping complex. 
For example, for M, N ∈ ModΛ, then HomModΛ(M, N) is commonly also denoted by 
RHom(M, N). Its n-th cohomology is the Hom-group Hom(M, N [n]) in the classical 
derived category.
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2.2. Limits and filtered colimits

Throughout, we freely use general facts about the forgetful functors

Catperf
∞ ⊂ CatEx

∞ ⊂ Cat∞

between the ∞-categories of small stable idempotent complete, respectively small stable, 
respectively arbitrary small ∞-categories, together with exact, respectively exact, respec-
tively all functors. Recall that any functor between idempotent complete ∞-categories 
automatically preserves retracts or, equivalently, colimits indexed by Idem.

Lemma 2.1. All three ∞-categories above have small limits and filtered colimits and both 
inclusions preserve these.

Proof. See [28, Theorem 1.1.4.4, Proposition 1.1.4.6] for the claims concerning the latter 
functor. For the former, we use that for any fully faithful right adjoint D ⊂ C (such 
as ι : Catperf

∞ ⊂ CatEx
∞ ), the inclusion creates all limits that C admits. Filtered colimits 

in Catperf
∞ are computed by taking the idempotent completion of the colimit in CatEx

∞ . 
According to [27, Corollary 4.4.5.21], however, that filtered colimit is already idempotent 
complete, showing that the inclusion ι also preserves filtered colimits. �
Lemma 2.2. Let Λ be a ring.

(1) If Λ = colim Λi is a filtered colimit of rings, then the natural functor

colim PerfΛi
−→ PerfΛ

is an equivalence. Here the transition functors are given by (-) ⊗Λi
Λj for j ≥ i.

(2) Let Λ = limi≥1 Λi be a sequential limit of rings such that all transition maps Λi+1 →
Λi are surjective with locally nilpotent kernel. Then the natural functor

PerfΛ −→ lim PerfΛi
, M �→ (M ⊗Λ Λi)i≥1

is an equivalence. In addition, the functor PerfΛ → PerfΛ1 , M �→ M ⊗Λ Λ1 is con-
servative.

Proof. In part (1), the full faithfulness follows from standard ⊗-Hom-adjunctions using 
that perfect complexes are dualizable. Since Λ lies in the essential image, the functor is 
an equivalence given that both ∞-categories are in Catperf

∞ .
Part (2) is [4, Lemma 4.2]: for full faithfulness, we note that the functor M ⊗Λ (-) ∼=

HomModΛ
(M∨, -) commutes with limits so that M ∼= limM⊗ΛΛi for any M ∈ PerfΛ. For 

essential surjectivity, we use that a quasi-inverse of the functor is provided by {Mi} �→
limMi, see [33, Tag 0CQG].
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For the final statement, it remains to prove that the functor PerfΛi
→ PerfΛ1 , M �→

M ⊗Λi
Λ1 is conservative for any i ≥ 1. So let M ∈ PerfΛi

such that M ⊗Λi
Λ1 � 0. We 

choose a bounded complex (Ma → · · · → M b) of finitely generated projective Λi-modules 
representing M . We need to show that the complex is exact. The derived tensor product 
M ⊗Λi

Λ1 is represented by (Ma ⊗Λi
Λ1 → · · · → M b ⊗Λi

Λ1). As the complex is exact 
by assumption, the map M b−1 ⊗Λi

Λ1 → M b ⊗Λi
Λ1 is surjective. Nakayama’s lemma 

shows that M b−1 → M b is surjective as well, using that ker(Λi → Λ1) is generated by 
nilpotent elements. By projectivity, this map splits so that M b−1 � M b ⊕ N b−1. We 
are reduced to show that the resulting complex (Ma → · · · → M b−2 → N b−1) is exact. 
Continuing by induction on the length b − a implies our claim. �

Write Catn ⊂ Cat∞ for the full subcategory spanned by n-categories [27, Section 
2.3.4], and similarly Catn(Idem) ⊂ Cat∞(Idem) for the full subcategory consisting of 
idempotent complete n-categories. Recall that Catn, Catn(Idem) admit limits and filtered 
colimits and that the above inclusions preserve these. Let us record the following lemma 
from [6, Lemma 3.7] for later use:

Lemma 2.3. In Catn and Catn(Idem), filtered colimits commute with totalizations (=Δ-
indexed limits).

Proof. By [6, Lemma 3.7, Example 3.6], this holds true for Catn. Now use that 
Catn(Idem) ⊂ Catn preserves limits and filtered colimits. �
3. Definitions and basic facts

In this section, we start out setting up the basics of a theory of lisse (French for 
smooth) and constructible sheaves on schemes, with coefficients in a condensed (unital, 
commutative) ring Λ.

Throughout the paper, following [8], we fix a strong limit cardinal κ. All schemes X
appearing in this paper are required to have |X| < κ. (Alternatively, one may avoid such 
a choice using the set-theoretic conventions in [3, §1.2].)

For a scheme X, we denote by Xproét its proétale site introduced in [8, §4]. Thus, 
Xproét is the category of weakly étale schemes over X with covers given by families 
{Ui → U} of maps in Xproét that are fpqc-coverings, that is, any open affine in U is 
mapped onto by an open affine in �iUi. Being a major difference with étale site Xét, 
any scheme X admits a proétale cover by w-contractible affine schemes, that is, by affine 
schemes U such that any weakly étale surjection V → U splits.

Also, for any profinite set S, we denote by Sproét the category of profinite sets over S
with covers given by finite families of jointly surjective maps. The w-contractible objects 
in Sproét are the extremally disconnected profinite sets. We use this in the special case 
where S = ∗ is the singleton: For any scheme X, there is the map of sites

pX : Xproét −→ ∗proét
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given by the limit-preserving functor (in the opposite direction) S = limSi �→ limXSi =:
X × S.

Throughout this section, Λ is a condensed (unital, commutative) ring Λ, that is, a 
sheaf of rings on ∗proét, see [11]. We write ΛX := p−1

X Λ for the corresponding sheaf of 
rings on Xproét. The condensed rings considered in this paper arise as follows:

Example 3.1. Every T1-topological ring Λ induces sheaf of rings, also denoted by Λ, 
on ∗proét:

S �−→ Mapscont(S,Λ),

that is, continuous maps from the profinite set S to Λ. In fact, we have a functor from 
the category of T1-topological rings into the category of condensed rings. This functor is 
fully faithful when restricted to those Λ whose underlying topological space is compactly 
generated.

In fact, for any scheme or profinite set X, the sheaf ΛX is nothing but the sheaf of 
rings on Xproét given by

U �−→ Mapscont(U,Λ),

that is, continuous maps from the underlying topological space of U into Λ: any con-
tinuous map U → Λ from a w-contractible affine U ∈ Xproét factors uniquely through 
U → π0U because Λ is T1. In [8, Lemma 4.2.12], this sheaf is denoted FΛ.

Favorable examples of T1-topological rings Λ include all discrete rings, adic rings, 
algebraic field extensions E ⊃ Q� equipped with the colimit topology, their open subrings 
of integers OE , but also the ring of adeles AT

K prime to some finite set of places T in 
some number field K.

For any scheme X, we denote by D(X, Λ) the derived ∞-category of the abelian 
category of sheaves of ΛX -modules on Xproét. This is a presentable stable ∞-category 
which is symmetric monoidal and closed. The monoidal structure is denoted by -⊗ΛX

-
and the inner homomorphisms by HomΛX

(-, -), so that

HomΛX
(-, -) = HomD(X,Λ)(-, -) = RΓ

(
X,HomΛX

(-, -)
)

is the mapping complex.
For any n ∈ Z, the truncations τ≥n, τ≤n in the standard t-structure on D(X, Λ)

induce (in cohomological notation) adjunctions

τ≥n : D(X,Λ) � D≥n(X,Λ) : incl, incl : D≤n(X,Λ) � D(X,Λ) : τ≤n,

where incl is the inclusion of the respective subcategories. The subcategory D≤0(X, Λ)
is preserved under -⊗ΛX

-. As Xproét is locally weakly contractible [8, Proposition 4.2.8], 
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the t-structure on D(X, Λ) is left-complete (equivalently, Postnikov towers converge in 
the associated hypercompleted ∞-topos) and the ∞-category D(X, Λ) is compactly 
generated, see [8, Proposition 3.2.3]. A family of compact generators is given by the 
objects ΛX [U ] ∈ D(X, Λ), for U ∈ Xproét w-contractible affine, corepresenting the func-
tor RΓ(U, -). We remark that D(X, Λ) is equivalent to the ∞-category of ΛX-modules on 
the hypercompleted ∞-topos associated with Xproét by [29, Theorem 2.1.2.2, Definition 
2.1.0.1]. The above also applies to any profinite set S and the ∞-category D(S, Λ) in 
place of X and D(X, Λ) (in fact, this is just a special case).

If f : Y → X is any morphism of schemes, then ΛY = f−1ΛX . It is formal to check 
that the ordinary pullback, respectively pushforward of sheaves induces an adjunction

f∗ = f−1 : D(X,Λ) � D(Y,Λ) : f∗,

where f∗ is exact, t-exact and symmetric monoidal. Similarly, if Λ → Λ′ is a morphism 
of condensed rings, then the forgetful functor D(X, Λ′) → D(X, Λ) admits a symmetric 
monoidal left adjoint

D(X,Λ) → D(X,Λ′), M �→ M ⊗ΛX
Λ′
X .

Let us denote by Γ(X, Λ) the (underived) global sections of ΛX viewed as a ring. Then 
there is the functor

ModΓ(X,Λ) → D(X,Λ), M �→ MX , (3.1)

characterized in PrSt as the colimit-preserving extension of Γ(X, Λ) �→ ΛX . Explicitly, 
MX is the hypersheaf associated with the presheaf on Xproét given by U �→ M ⊗Γ(X,Λ)
RΓ(U, Λ). This functor is symmetric monoidal and makes D(X, Λ) a commutative algebra 
object in PrSt

Γ(X,Λ). The sections of MX on w-contractible qcqs U ∈ Xproét are computed 
as

RΓ(U,MX) ∼= M ⊗Γ(X,Λ) Γ(U,Λ). (3.2)

In particular, if f : Y → X lies in Xproét, then f∗MX
∼=

(
M ⊗Γ(X,Λ) Γ(Y, Λ)

)
Y

.

Remark 3.2. Here is an equivalent way of defining the functor M �→ MX in (3.1): For 
any scheme or profinite set X, there is a natural map Γ(X,Λ) → ΛX of sheaf of rings 
on Xproét where Γ(X,Λ) denotes the constant sheaf associated with the discrete ring 
Γ(X, Λ). Then the functor (3.1) is equivalent to the functor

M �−→ M ⊗Γ(X,Λ) ΛX ,

where M denotes the constant sheaf. As an example, let X = ∗, Λ = Q� (see Example 3.1) 
and M ∈ Mod♥ a Q�-vector space. Then, loosely speaking, the above functor equips 
Q�
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M with the relatively discrete topology. More precisely, writing M = colimQI
� as an 

increasing union of finite-dimensional vector spaces, we take the product topology on QI
�

and the colimit topology on M .

Recall that a subset of a qcqs topological space is called constructible if it is a finite 
Boolean combination of quasi-compact open subsets. Also, recall the notion of dualizable 
objects in symmetric monoidal categories [28, Definition 4.6.1.1, Remark 4.6.1.12].

Definition 3.3. Let X be a scheme or a profinite set, and Λ a condensed ring.

(1) A sheaf M ∈ D(X, Λ) is called lisse if it is dualizable.
(2) A sheaf M ∈ D(X, Λ) is called constructible if, for any open affine U ⊂ X, there 

exists a finite subdivision of U into constructible locally closed subschemes Ui ⊂ U

such that M |Ui
is lisse.

If X is qcqs (=quasi-separated and quasi-compact) and M ∈ D(X, Λ) constructible, 
then there is a finite subdivision of X into constructible locally closed subschemes Xi ⊂ X

such that M |Xi
is lisse. The argument is purely topological and the same as in [33, 

Tag 095E].
The full subcategories of D(X, Λ) of lisse, respectively constructible Λ-sheaves are 

denoted by

Dlis(X,Λ) ⊂ Dcons(X,Λ).

Both ∞-categories are naturally commutative algebra objects in Catperf
∞,Γ(X,Λ), that is, 

idempotent complete stable Γ(X, Λ)-linear symmetric monoidal ∞-categories.
If f : Y → X is any map of schemes, then the pullback f∗ : D(X, Λ) → D(Y, Λ)

preserves lisse, respectively constructible sheaves and hence induces functors

f∗ : Dlis(X,Λ) → Dlis(Y,Λ), f∗ : Dcons(X,Λ) → Dcons(Y,Λ).

For lisse sheaves, this follows from the monoidality of f∗. For constructible sheaves, one 
additionally reduces to the case of affine schemes so that f induces a spectral map on 
the underlying topological spaces, and thus is continuous in the constructible topology, 
see [33, Tag 0A2S].

If Λ → Λ′ is a map of condensed rings, then the functor (-) ⊗ΛX
Λ′
X preserves lisse, 

respectively constructible sheaves and hence induces functors

Dlis(X,Λ) → Dlis(X,Λ′), Dcons(X,Λ) → Dcons(X,Λ′).

For any constructible closed immersion i : Z ↪→ X with open complement j : U ↪→ X, 
we have adjunctions
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j! : D(U,Λ) � D(X,Λ) : j∗, i∗ : D(Z,Λ) � D(X,Λ) : i!, (3.3)

fitting in fiber sequences j!j∗ → id → i∗i
∗ and i∗i! → id → j∗j

∗, see [8, §6.1]. The 
functors j∗, j!, i∗ are fully faithful and satisfy the usual formulas

i∗i∗ � j∗j∗ � j∗j! � id, j∗i∗ � i∗j! � 0. (3.4)

Lemma 3.4. In the above situation, the functors i∗, j! are t-exact and preserve the full 
subcategories of constructible sheaves.

Proof. By [8, Lemma 6.2.1 (1) + (2)], the functors i∗, j! induce equivalences onto the full 
subcategory of D(Xproét, Λ) spanned by objects supported on Z, respectively U . Their 
inverses are given by i∗, j∗ which are clearly t-exact, hence so are the functors i∗, j!. 
Using the formulas (3.4) it is clear that i∗, j! preserve constructibility. �

We use the following terminology throughout:

Definition 3.5. A sheaf M ∈ D(X, Λ) is called (perfect-)constant if M � N ⊗Λ∗ ΛX for 
some (perfect) complex of Λ∗-modules N , where Λ∗ = Γ(∗, Λ) is the underlying ring. It 
is called (pro-)étale-locally (perfect-)constant if it is so locally on X(pro-)ét.

Any proétale-locally perfect-constant sheaf is lisse. The converse holds for discrete 
coefficient rings Λ (Corollary 7.4) in which case Λ∗ ∼= ΛX . It also holds for schemes 
having locally finitely many irreducible components, see Theorem 4.13. The following 
example of a lisse sheaf, which is based on [8, Example 6.6.12], shows however that lisse 
sheaves on profinite sets do not have such a simple description:

Example 3.6. Let S = Ẑ = limm Z/m be the profinite completion of the integers viewed 
as a profinite set. Take Λ = Ẑ viewed as a profinite ring. Then the endomorphisms of 
ΛS in D(S, Λ)♥ are computed as

H0(S,Λ) = Mapscont(S, Ẑ) = Mapscont(Ẑ, Ẑ).

The constant map f ≡ s ∈ Ẑ corresponds to the endomorphism of ΛS given by multi-
plication with the scalar s. By contrast, if f : ΛS → ΛS corresponds to the identity in 
Mapscont(Ẑ, Ẑ), then its stalk fs at s ∈ S is multiplication with s viewed as element 
in Ẑ. The complex (ΛS

f→ ΛS) ∈ Dlis(S, Λ) is étale-locally perfect-constant after each 
reduction modulo m �= 0. However, the complex is not proétale-locally perfect-constant 
as any cover {Si → S} has a member Si → S whose image is infinite.

4. Descent properties

Lisse and constructible sheaves interact nicely with proétale descent. We first study 
lisse sheaves on w-contractible schemes, which may be thought of as a basis for the 
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proétale topology of objects having cohomological dimension zero. We then establish 
hyperdescent for Dlis and Dcons and draw some consequences.

4.1. Lisse sheaves on w-contractible schemes

Recall the functor ModΓ(X,Λ) → D(X, Λ), M �→ MX from (3.1).

Lemma 4.1. Let X be a w-contractible qcqs scheme, or an extremally disconnected profi-
nite set.

(1) The functor (3.1) induces an adjunction

(-)X : ModΓ(X,Λ) � D(X,Λ) : RΓ(X, -).

Both adjoints are colimit-preserving and symmetric monoidal. In addition, (-)X is 
fully faithful and RΓ(X, -) is t-exact.

(2) The adjunction induces an equivalence on dualizable objects:

(-)X : PerfΓ(X,Λ) ∼= Dlis(X,Λ) : RΓ(X, -)

Proof. For (1), we note that the spectra-valued functor RΓ(X, -) : D(X, Λ) → Sp is 
right adjoint to the unique colimit-preserving functor Sp → D(X, Λ) mapping the sphere 
spectrum to ΛX . Since ModRΓ(X,Λ) is the category of modules over the monad associated 
to the adjunction, this induces an adjunction

ModRΓ(X,Λ) � D(X,Λ).

Since X is w-contractible qcqs, respectively extremally disconnected, it is w-contractible 
coherent in the topos-theoretic sense. Thus RΓ(X, -) is limit-preserving, t-exact and 
preserves colimits of uniformly bounded below diagrams, hence all colimits using the left-
completeness of D(X, Λ). In particular, RΓ(X, Λ) = Γ(X, Λ). The unit of the adjunction 
id → RΓ(X, -) ◦ (-)X is an equivalence by (3.2) so that (-)X is fully faithful. Clearly, (-)X
is also colimit-preserving and symmetric monoidal. For M, N ∈ D(X, Λ), their tensor 
product M ⊗ΛX

N is the ∞-sheafification of the presheaf U �→ RΓ(U, M) ⊗RΓ(U,Λ)
RΓ(U, N). Again, since X is w-contractible coherent, the sheafification is unnecessary, 
so its global sections are equivalent to RΓ(X, M) ⊗Γ(X,Λ) RΓ(X, N).

For (2), we note that the adjunction restricts to an adjunction on dualizable objects 
by monoidality of both functors. The counit of this adjunction (-)X ◦ RΓ(X, -) → id is 
an equivalence if and only if the functor

RΓ(X, -) : Dlis(X,Λ) → PerfΓ(X,Λ)
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is fully faithful, see [27, Proposition 5.2.7.4]. For M, N ∈ Dlis(X, Λ), this follows 
from HomΛX

(M, N) ∼= N ⊗ΛX
M∨ upon applying the symmetric monoidal functor 

RΓ(X, -). �
The following example, communicated to us by Peter Scholze, shows that the functor 

(-)X is not t-exact in general.

Example 4.2. Let X = βN be the Stone-Čech compactification of the natural numbers 
viewed as an extremally disconnected profinite set. Let Λ = Q� viewed as a condensed 
ring, see Example 3.1. The map N → Q�, n �→ �n uniquely extends to a continuous map 
f : βN → Q� by the universal property of β, that is, f ∈ Mapscont(βN, Q�) = Γ(X, Λ). 
One checks that the complex 0 → Γ(X, Λ) f→ Γ(X, Λ) is exact. However, the induced 
complex on the level of sheaves is not exact because f |∂X = 0, where ∂X = βN\N
denotes the boundary.

If X is a qcqs scheme, then its underlying topological space is spectral [33, Tag 094L]. 
Thus, the set of connected components π0X endowed with the quotient topology is a 
profinite space. Any map S → π0X of profinite sets can be written as profinite π0X-sets 
S = limSi such that each Si → π0X is the base change of a map of finite sets, see [8, 
Proof of Lemma 2.2.8]. If we equip the topological space X ×π0X Si → X with the sheaf 
of rings given by the pullback of the structure sheaf on X, then it is representable by an 
object of the Zariski site XZar. The induced transition maps X ×π0X Sj → X ×π0X Si, 
j ≥ i are affine so that the limit

X ×π0X S
def= limX ×π0X Si

exists in the category of X-schemes. The functor S �→ X×π0X S from profinite π0X-sets 
to X-schemes is limit-preserving and induces a map of sites

πX : Xproét −→ (π0X)proét, (4.1)

factorizing pX : Xproét → ∗proét.

Proposition 4.3. Let X be a w-contractible affine scheme.

(1) The functor

π∗
X : D(π0X,Λ) −→ D(X,Λ)

is fully faithful and commutes with the formation of inner homomorphisms.
(2) A Λ-sheaf M ∈ D(X, Λ) lies in the essential image of π∗

X if and only if for all 
maps U → V in Xproét between w-contractible affine schemes inducing isomorphisms 
π0U ∼= π0V , the map
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RΓ(V,M)
∼=−→ RΓ(U,M)

is an equivalence.
(3) The functor π∗

X induces an equivalence

Dlis(π0X,Λ)
∼=−→ Dlis(X,Λ).

Proof. We adjust the argument given in [8, Lemma 4.2.13] for the abelian categories. 
Abbreviate π = πX , D(X) = D(X, Λ) and D(π0X) = D(π0X, Λ).

For (1), we show that the natural map id → π∗π
∗ is an equivalence which formally 

implies the full faithfulness. Any continuous π0X-map U → S with affine U ∈ Xproét, 
S ∈ (π0X)proét factors uniquely through U → π0U , since any profinite set is totally 
disconnected. Hence, if M ∈ D(π0X), then π∗M is the sheafification of the presheaf 
U �→ RΓ(π0U, M). In particular, if U is also w-contractible, then we have an equivalence

RΓ(U, π∗M) ∼= RΓ(π0U,M). (4.2)

In this case, π0U is extremally disconnected by [8, Lemma 2.4.8]. We apply these obser-
vations to show that the map M → π∗π

∗M is an equivalence as follows. By evaluating 
at any extremally disconnected S ∈ (π0X)proét it suffices to show that the map

RΓ(S,M) −→ RΓ (X ×π0X S, π∗M)

is an equivalence. As X ×π0X S → X is an pro-(Zariski open) pro-finite map with 
π0(X ×π0X S) ∼= S (by construction) we see that X ×π0X S is w-contractible affine as 
well: affine is clear; X → π0X has a section s : π0X → X given by the closed points in 
X by w-locality [8, Lemma 2.1.4] so that

s×π0X id : S = π0X ×π0X S → X ×π0X S

identifies S with the closed points in X ×π0X S; finally, X ×π0X S → X induces an 
isomorphism on local rings which are therefore strictly Henselian at all closed points. 
This shows that X ×π0X S is w-strictly local and hence w-contractible by [8, Lemma 
2.4.8] using that its set of connected components is S (which is extremally disconnected). 
This implies M ∼= π∗π∗M . The preservation of inner homomorphisms is immediate from 
the full faithfulness using (4.2).

For (2), if M ∈ D(X) is equivalent to the π∗-pullback of some object in D(π0X), 
then it satisfies the desired condition by (4.2). Conversely, assume that M is localizing 
for maps U → V in Xproét of w-contractible affine schemes inducing an isomorphism on 
π0. We claim that the map π∗π∗M → M is an equivalence. Indeed, evaluating at some 
w-contractible affine U ∈ Xproét gives the map

RΓ(X ×π0X π0U,M) −→ RΓ(U,M) (4.3)
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induced from the canonical map U → X×π0X π0U over π0U . One argues as in (1) above 
to see that X ×π0X π0U is w-contractible affine with space of components π0U . Thus, 
(4.3) is an isomorphism by our assumption on M . We conclude M ∼= π∗π∗M .

For (3), we note ΛX
∼= π∗Λπ0X so that Γ(X, Λ) = Γ(π0X, Λ) by (1). By (4.2) the 

diagram

Dlis(π0X) π∗

Dlis(X)

PerfΓ(π0X,Λ)

∼= (-)π0X

PerfΓ(X,Λ),

∼= (-)X

commutes up to equivalence. The vertical functors are equivalences by Lemma 4.1
(2). �

The following corollary shows that lisse sheaves extend proétale locally to small neigh-
borhoods:

Corollary 4.4. Let A be a ring Henselian along an ideal I. Let i : Z := SpecA/I ↪→
SpecA =: X be the closed immersion induced by the quotient map A → A/I.

(1) The map i induces an isomorphism π0Z ∼= π0X.
(2) The affine scheme X is w-contractible if and only if Z is w-contractible. In this case, 

there is an equivalence

i∗ : Dlis(X,Λ)
∼=−→ Dlis(Z,Λ).

Proof. For (1), the following argument was explained to us by Kȩstutis Česnavičius: 
Being profinite sets the map π0Z → π0X is obtained as a limit over (finer and finer) 
finite subdivisions of Z and X into clopen (=closed and open) subsets. By the unique 
lifting of idempotents along the quotient map A → A/I [33, Tag 09XI], these finite 
subdivisions match, so do the limits.

For (2), we note that by [8, Theorem 1.8, Lemma 2.2.9] an affine scheme is w-
contractible if and only if it is w-strictly local and its profinite set of connected compo-
nents is extremally disconnected. Since A is Henselian along I, the ring A is w-strictly 
local if and only if A/I is w-strictly local, see [8, Lemma 2.2.13]. So the first statement 
in (2) follows from (1). The second then follows, again using (1), from Proposition 4.3
(3). �
4.2. Hyperdescent

In this subsection, let X be a scheme and Λ a condensed ring.
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Lemma 4.5. The property of Λ-sheaves of being lisse, respectively constructible is local on 
Xproét.

Proof. It is enough to prove the following: if X is affine and j : U → X a w-contractible 
affine cover, then M ∈ D(X, Λ) is lisse, respectively constructible if and only if j∗M
is so. Since j∗ : D(X, Λ) → D(U, Λ) is monoidal, conservative and commutes with inner 
homomorphisms, the statement for the property “lisse” follows.

Now assume that j∗M is constructible. Since the 1-topos of Xproét is generated by 
pro-étale affine objects [8, Lemma 4.2.4], we can assume that U = limi Ui → X is a 
cofiltered limit of affine schemes Ui ∈ Xét. If the stratification on U witnessing the 
constructibility of j∗M arises by pullback from X, then we are done using the case of 
lisse sheaves above. Following [8, Lemmas 6.3.10, 6.3.13] we reduce to this situation in 
several steps.

First, each constructible subset of U arises by pullback from some Ui. So the stratifi-
cation witnessing the constructibility of j∗M arises by pullback from some Ui. We reduce 
to the case where U = Ui → X is an étale cover.

Next, stratifying X by constructible locally closed subschemes Xi ⊂ X such that the 
base change U ×X Xi → Xi is finite étale [33, Tag 03S0] we may assume that U → X is 
finite étale (after replacing X by some Xi, and possibly a Zariski localization to preserve 
the affineness of X).

Now writing X = limi Xi as a cofiltered inverse limit of finite type Z-schemes the 
map U → X arises as the base change of some finite étale map Ui → Xi. The connected 
components of Xi are open and closed. After possibly replacing X by a finite clopen cover 
we may assume that Xi is connected. Likewise, we may assume that Ui is connected. 
Then we may replace Ui → Xi by its Galois closure and assume that Ui → Xi is a 
finite Galois cover with group G = Aut(Ui/Xi). Hence, we reduced to the case where 
j : U → X is a G-torsor under some finite constant X-group scheme G.

Finally, using the G-action on U one easily constructs a finite subdivision of U into 
G-equivariant constructible locally closed Ui ⊂ U such that j∗M |Ui

is lisse. Clearly, these 
strata arise by pullback along the G-torsor U → X. This implies the constructibility of 
M (again using the case of lisse sheaves above). �
Corollary 4.6. If j : U → X is quasi-compact étale (respectively, finite étale), then 
j! : D(U, Λ) → D(X, Λ) preserves the subcategories of constructible sheaves (respectively, 
lisse sheaves).

Proof. As in the proof of Lemma 4.5, one reduces to the finite étale case and further 
to the case of a G-torsor j : U → X under some finite constant X-group scheme G. 
Then U ×X U ∼= G ×X which implies j∗j!M ∼= ⊕g∈GM for any D(X, Λ). The corollary 
follows. �
Corollary 4.7. The functors U �→ Dcons(U, Λ), Dlis(U, Λ) are hypersheaves of ∞-
categories on Xproét.
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Proof. We only spell out the constructible case, the one for lisse sheaves is identical. 
We first check that U �→ Dcons(U, Λ) is a sheaf on Xproét. Given an object U ∈ Xproét

and an étale cover {Ui → U} we denote by U the covering sieve generated by the 
maps {Ui → U}. By [29, Remark 2.1.0.5], we know that the functor U �→ D(U, Λ) is a 
hypersheaf on Xproét. Thus, we have an equivalence

D(U,Λ)
∼=−→ lim

V ∈U
D(V,Λ).

As constructibility is preserved by pullback, we have inclusions of full subcategories

Dcons(U,Λ) ⊂ lim
V ∈U

Dcons(V,Λ) ⊂ D(U,Λ).

The essential image of the limit consists of objects M ∈ D(U, Λ) such that M |V is 
constructible for every V ∈ U . In particular, M |Ui

is constructible for every Ui in the 
cover {Ui → U}. Hence, M ∈ Dcons(U, Λ) by Lemma 4.5.

Given the sheaf property, being a hypersheaf can be checked locally, we reduce to the 
case where X is affine. In this case, the Grothendieck topology Xproét is finitary in the 
sense of [29, Section A.3.2]. So by [29, Proposition A.5.7.2] it is enough to show that for 
every hypercover U• → U with U ∈ Xproét qcqs, the natural functor

Dcons(U,Λ) −→ Tot
(
Dcons(U•,Λ)

)
:= lim

[n]∈Δ

(
Dcons(Un,Λ)

)
,

is an equivalence. Since U �→ D(U, Λ) is a hypersheaf, it satisfies descent. As constructibil-
ity is preserved by pullback, we have inclusions of full subcategories

Dcons(U,Λ) ⊂ Tot
(
Dcons(U•,Λ)

)
⊂ D(U,Λ).

The totalization is the full subcategory of objects M ∈ D(U, Λ) such that M |U0 is 
constructible. Hence, M ∈ Dcons(U, Λ) by Lemma 4.5. �
Corollary 4.8. Let X be a scheme, and let M ∈ D(X, Λ). Then M is lisse if and only if, 
for every map of w-contractible affines V → U in Xproét, RΓ(U, M) is a perfect complex 
(over Γ(U, Λ)) and if the natural map

RΓ(U,M) ⊗Γ(U,Λ) Γ(V,Λ) −→ RΓ(V,M)

is an equivalence.

Proof. Combine Lemma 4.1(2) with Corollary 4.7. �
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4.3. Boundedness properties

In order to compare our definition of, say, constructible Q̄�-sheaves to the classical 
one in terms of E-sheaves for finite field extensions E ⊃ Q�, it is necessary to control 
hyperdescent not only for Dlis, but for appropriate colimits of such ∞-categories. To do 
this, we filter the ∞-categories of lisse sheaves according to the amplitude of objects:

Definition 4.9. For an integer n ≥ 0, we write D{−n,n}
lis (X, Λ) for the full subcategory of 

Dlis(X, Λ) of objects M such that M and its dual M∨ lie in degrees [−n, n] with respect 
to the t-structure on D(X, Λ).

The purpose of introducing this subcategory is to have a (2n + 1)-category: M ∼=
τ≤nτ≥−nM for each such object. For example, the category D{0,0}

lis (X, Λ) is the full 
subcategory of dualizable objects in D(X, Λ)♥, that is, those Λ-sheaves M that are 
locally on Xproét isomorphic to N ⊗Λ∗ ΛX for some finite projective Γ(X, Λ)-module N .

Lemma 4.10. Assume that X is qcqs. Then

Dlis(X,Λ) =
⋃
n≥0

D{−n,n}
lis (X,Λ)

as full subcategories of Dlis(X, Λ).

Proof. The condition of being in the subcategory D{−n,n}
lis (X, Λ) can be checked proétale 

locally: the restriction functors are monoidal, conservative and preserve the t-structure. 
So we may assume that X is a w-contractible qcqs scheme. Then, under the equiva-
lence Dlis(X, Λ) ∼= PerfΓ(X,Λ) (see Lemma 4.1 (2)), an object lies in the subcategory 

D{−n,n}
lis (X, Λ) if and only if it is represented by a bounded complex of finitely generated 

projective Γ(X, Λ)-modules that is concentrated in degrees [−n, n]. Hence, the lemma 
follows from the corresponding filtration PerfΓ(X,Λ) =

⋃
n≥0 Perf{−n,n}

Γ(X,Λ) on perfect mod-
ules. �
Corollary 4.11. Every constructible Λ-sheaf on a qcqs scheme is bounded.

Proof. By an induction on the finite number of strata witnessing the constructibility, 
using the conservativity and t-exactness of the pair of functors (j∗, i∗) in the notation of 
(3.3), one reduces to the case of lisse sheaves. So we are done by Lemma 4.10. �
Lemma 4.12. Let n ≥ 0 be an integer.

(1) For any map f : Y → X of schemes the pullback functor f∗ restricts to a functor

f∗ : D{−n,n}
lis (X,Λ) → D{−n,n}

lis (Y,Λ).
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(2) For any map of condensed rings Λ → Λ′ the base change functor (-) ⊗ΛX
Λ′
X restricts 

to a functor

(-) ⊗ΛX
Λ′
X : D{−n,n}

lis (X,Λ) → D{−n,n}
lis (X,Λ′).

(3) The functor X �→ D{−n,n}
lis (X, Λ) satisfies hyperdescent on Xproét.

Proof. Part (1) is clear since f∗ is t-exact and, being monoidal, preserves duals. For (2) 
we use that ⊗ is right t-exact in general. On the other hand,

M �→ M ⊗ΛX
Λ′
X = (M∨)∨ ⊗ΛX

Λ′
X = HomΛX

(M∨,Λ′
X)

is also left t-exact. Part (3) is immediate from Corollary 4.7 and (1), using that the 
condition of lying in the subcategory D{−n,n}

lis (X, Λ) can be checked proétale locally. �
4.4. Local constancy of lisse sheaves

Recall from Definition 3.5 that a sheaf M ∈ D(X, Λ) is called proétale-locally perfect-
constant if M is locally on Xproét isomorphic to N ⊗Λ∗ ΛX for some N ∈ PerfΛ∗ , where 
Λ∗ = Γ(∗, Λ) is the underlying ring.

Theorem 4.13. Let Λ be a condensed ring. Let X be a scheme that has locally a finite 
number of irreducible components. Then M ∈ D(X, Λ) is lisse if and only if M is proétale-
locally perfect-constant.

Proof. Let M be lisse (the other direction is clear). After a Zariski localization, we reduce 
to the case where X is affine and connected with finitely many irreducible components. 
As any two points of X can be joined by a finite zig-zag of specializations, the pullback 
of M to any geometric point is perfect-constant (Lemma 4.1) with the same value N ∈
PerfΛ∗ . Let U ∈ Xproét be any w-contractible affine cover. We claim that there exists an 
isomorphism M |U � N ⊗Λ∗ ΛU , implying the theorem.

First, assume that X is irreducible, and fix a geometric generic point η → X. Let 
Uη := U ×X η be the base change, and consider the commutative diagram of sites

ηproét (Uη)proét ∼=

πUη

(π0Uη)proét

Xproét Uproét
πU (π0U)proét

(4.4)

Here πUη
is an equivalence because η is a geometric point and Uη → η is proétale. Further, 

the map π0Uη → π0U is surjective and admits a splitting: the map on topological spaces 
|Uη| → |U | ×|X| |η| is surjective by [33, Tag 03H4], and hence induces a surjection on 
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connected components. So we need to see that the image of every connected component 
of |U | under the map |U | → |X| contains the unique generic point of the irreducible space 
|X|. This is true because the map |U | → |X| is generalizing and connected components 
are closed under generalizations. Now as U is w-contractible affine, so π0U is extremally 
disconnected profinite, there exists a section to the surjection π0Uη → π0U .

To finish the argument in the irreducible case, we apply Dlis(-, Λ) to the diagram (4.4)
and observe that πU induces an equivalence by Proposition 4.3 (3). More concretely, any 
isomorphism M |η � N ⊗Λ∗ Λη induces an isomorphism over Uη, and hence over U by 
using the section.

Next, if X = ∪Xi is the union of finitely many irreducible components, then we 
denote Ui = Xi ×X U . It follows from the irreducible case that there exist isomorphisms 
ϕi : M |Ui

� N⊗Λ∗ΛUi
. As U is w-contractible affine, so are the closed subschemes Ui ⊂ U

by [8, Lemma 2.2.15]. We denote by Ũi → U their Henselizations. Using Corollary 4.4
(2), the isomorphisms ϕi uniquely extend to ϕ̃i : M |Ũi

� N ⊗Λ∗ ΛŨi
. As there are only 

finitely many irreducible components, the disjoint union �Ũi → U is a cover in Xproét, 
and hence admits a section because U is w-contractible affine. Therefore, we can pullback 
the isomorphism �ϕ̃i along the section to obtain an isomorphism M |U � N ⊗Λ∗ ΛU as 
desired. �
5. Change of coefficients

We show that the ∞-category of lisse and constructible sheaves behaves well under 
certain sequential limits and filtered colimits in the condensed coefficients Λ. Throughout, 
let X be a scheme.

5.1. Sequential limits

In this section, let Λ = limi≥1 Λi be a sequential limit of condensed rings such that all 
transition maps Λi+1 → Λi are surjective with locally nilpotent kernel. The last condition 
means that, for all profinite sets S, all elements of the kernel of Γ(S, Λi+1) → Γ(S, Λi)
are nilpotent. We note that ΛX identifies via the natural map with

ΛX

∼=−→ lim Λi,X
∼= Rlim Λi,X ,

where we use that sequential limits of surjections are exact in a replete topos, see [8, 
Proposition 3.1.10]. In the following all limits will be derived unless mentioned otherwise. 
Also recall the generalities about limits of stable (idempotent complete) ∞-categories 
from Section 2.2.

Proposition 5.1. The following natural functors are equivalences:

Dlis(X,Λ)
∼=−→ lim Dlis(X,Λi) and
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Dcons(X,Λ)
∼=−→ lim Dcons(X,Λi).

Both limits are formed using (-) ⊗Λj
Λi for j ≥ i. An inverse functor is given by {Mi} �→

limMi.

Proof. We begin with the ∞-categories of lisse sheaves. Both functors X �→
Dlis(X, Λ), lim Dlis(X, Λi) are hypersheaves on Xproét by Corollary 4.7. So we reduce 
to the case where X is w-contractible and affine. Using Lemma 4.1 (2), we get a com-
mutative (up to equivalence) diagram:

Dlis(X,Λ)

∼=

lim Dlis(X,Λi)

∼=

PerfΓ(X,Λ) lim PerfΓ(X,Λi)

Since X is w-contractible and affine, all transition maps Γ(X, Λi+1) → Γ(X, Λi) are sur-
jective with locally nilpotent kernel. Thus, the lower horizontal functor is an equivalence 
by Lemma 2.2 (2).

As for constructible sheaves, we claim that the map

M
∼=−→ lim (M ⊗ΛX

Λi,X)

is an equivalence for any M ∈ Dcons(X, Λ): the functor ι∗ commutes with limits for any 
constructible locally closed immersion ι : Z → X by [8, Corollary 6.1.5]. Using the local-
ization sequences (3.3) we may assume that M is lisse where our claim is already proven. 
This formally implies the full faithfulness: for any N ∈ Dcons(X, Λ), M ∈ D(X, Λ),

HomΛX
(M,N) ∼= lim HomΛX

(M,N⊗ΛX
Λi,X) ∼= lim HomΛi,X

(M⊗ΛX
Λi,X , N⊗ΛX

Λi,X).

For essential surjectivity, it is enough to show that, for any {Mi} ∈ lim Dcons(X, Λi) and 
fixed j ≥ 1, the limit limMi ∈ D(Xproét, Λ) is constructible and the natural map

(limMi) ⊗ΛX
Λj,X −→ Mj (5.1)

is an equivalence. As before, we reduce to the case where Mj is lisse. We claim that 
limMi is lisse as well. Evaluating at any w-contractible affine U ∈ Xproét gives

(lim RΓ(U,Mi)) ⊗Γ(U,Λ) Γ(U,Λj) −→ RΓ(U,Mj) (5.2)

Since RΓ(U, Mj), and hence RΓ(U, M1), is perfect by Lemma 4.1 (2), this map is an 
equivalence and lim RΓ(U, Mi) = RΓ(U, limMi) is perfect by [33, Tag 0CQG]. Since U
was arbitrary, (5.1) is an equivalence. To see that limMi is lisse, it is remains (Corol-
lary 4.8) to show that the natural map
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(RΓ(U, limMi)) ⊗Γ(U,Λ) Γ(V,Λ) −→ RΓ(V, limMi)

is an equivalence for any map of w-contractible affines V → U in Xproét. Using the 
conservativity of (-) ⊗Γ(V,Λ) Γ(V, Λj) on perfect complexes proven in Lemma 2.2 (2), this 
follows from (5.2). �
5.2. Filtered colimits

In this section, we assume that Λ = colim Λi is a filtered colimit of condensed rings 
Λi. Recall the generalities about filtered colimits of stable (idempotent complete) ∞-
categories from Section 2.2.

Proposition 5.2. If X is qcqs, then the following natural functors are equivalences:

colim Dlis(X,Λi)
∼=−→ Dlis(X,Λ) and

colim Dcons(X,Λi)
∼=−→ Dcons(X,Λ).

Both filtered colimits are formed using (-) ⊗Λi
Λj for j ≥ i.

Proof. For lisse sheaves, it suffices by Lemma 4.10 to show that the functor

colimi D{−n,n}
lis (X,Λi) −→ D{−n,n}

lis (X,Λ)

is an equivalence for any fixed n ≥ 0. Both sides satisfy hyperdescent on Xproét
(Lemma 4.12 (3) using Lemma 2.3), so we may assume that X is w-contractible qcqs. 
In this case we have D{−n,n}

lis (X, Λ) ∼= Perf{−n,n}
Γ(X,Λ) by Lemma 4.1 (2), see also the proof 

of Lemma 4.10. Since X is qcqs, we have a presentation Γ(X, Λ) = colim Γ(X, Λi) as a 
filtered colimit of rings. We conclude using Lemma 2.2 (1).

As for constructible sheaves we note that for any constructible locally closed immersion 
ι : Z → X and M ∈ D(Zproét, Λ), N ∈ D(Xproét, Λ) we have

ι!(M ⊗ΛZ
ι∗N) ∼= ι!M ⊗ΛX

N (5.3)

by [8, Lemma 6.2.3 (3)]. Applying this with N = Λi and using standard arguments 
involving the fiber sequence j!j∗ → id → i∗i∗ in the notation of (3.3) the essential 
surjectivity follows from the case of lisse sheaves. For full faithfulness, it suffices to 
show (after using standard ⊗-Hom-adjunctions) that, for any M, N ∈ Dcons(X, Λi), the 
natural map

colimj≥i HomΛX,i

(
M,N ⊗ΛX,i

ΛX,j

)
−→ HomΛX,i

(
M, colimj≥i N ⊗ΛX,i

ΛX,j

)

is an equivalence. By Lemma 5.3 below, it is enough to show that there exists an integer 
n ≥ 0 such that N ⊗Λi,X

Λj,X ∈ D≥−n(X, Λi) for all j ≥ i. Using that X is qcqs, 
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we can perform an induction on the number of strata of a stratification witnessing the 
constructibility of N . Applying (5.3) to ι!ι∗N ⊗Λi,X

Λj,X and using the t-exactness of 
ι! (Lemma 3.4), we may then assume that N is lisse. Then it lies in D{−n,n}

lis (X, Λi)
for n � 0, so that N ⊗Λi,X

Λj,X lies in the same subcategory as well, see Lemma 4.12
(2). �

In the proof, we used the following general lemma. An analogous result for étale 
sheaves is proven in [8, Lemma 6.3.14]:

Lemma 5.3. For any fixed integer n ∈ Z, the following functors commute with filtered 
colimits with terms in D≥n(X, Λ):

(1) f∗ : D(X, Λ) → D(Y, Λ) for any qcqs map f : X → Y ;
(2) HomΛX

(M, -) : D(X, Λ) → D(X, Λ) for any qcqs scheme X and M ∈ Dcons(X, Λ).

In particular, under the conditions in (2), the functor

HomΛX
(M, -) = RΓ

(
X,HomΛX

(M, -)
)
: D(X,Λ) → ModΓ(X,Λ)

commutes with such colimits as well.

Proof. For the final assertion, we apply (1) to the map of sites f = pX : Xproét → ∗proét. 
Then RΓ(X, -) is the composition of the functors

D(X,Λ) f∗−→ D(∗,Λ) RΓ(∗,-)−→ ModΓ(X,Λ),

and hence commutes with filtered colimits with terms in D≥n(X, Λ) as well. So using 
(2), we see that HomΛX

(M, -) commutes with such filtered colimits as well. Here we use 
that any constructible sheaf on a qcqs scheme is bounded (see Corollary 4.11), so that 
the functor HomΛX

(M, -) maps D≥n(X, Λ) into D≥m(X, Λ) for some m ≤ n.
Statement (1) is an instance of [2, Corollary 3.10.5]. We include an argument for 

the convenience of the reader. Let N = colimNj be a filtered colimit of some sheaves 
Nj ∈ D≥n(X, Λ). It is enough to show that the natural map

colimj Hp ◦ f∗(Nj) → Hp ◦ f∗(N) (5.4)

is an equivalence in D(Y, Λ)♥ for any p ∈ Z, Hp := τ≤p ◦ τ≥p. As filtered colimits are 
t-exact we can write N = colimNj = colimm,j τ

≤mNj . By left exactness of f∗ only the 
terms τ≤pNj , τ≤pN contribute to Hp ◦ f∗ and we may assume Nj , N ∈ D[n,p](X, Λ). An 
induction on the length p − n reduces us further to the case where Nj , N are in a single 
t-degree. So after possibly renumbering we may assume Nj, N ∈ D(X, Λ)♥ embedded in 
degree 0. Evaluating (5.4) at any V ∈ Yproét w-contractible affine it is enough to show 
that
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colimj Hp(X×Y V,Nj) = colimj Γ(V,Hp ◦f∗(Nj)) → Γ(V,Hp ◦f∗(N)) = Hp(X×Y V,N)

is an isomorphism. By our assumption on f , the base change X×Y V is qcqs. It remains 
to show that for any qcqs scheme X the cohomology functor Hp(X, -) : D(X, Λ)♥ →
Mod♥

Γ(X,Λ) commutes with filtered colimits. Choosing a hypercover U• → X in Xproét

by w-contractible affine schemes, this can be computed as the p-th cohomology of the 
complex

· · · → 0 → Γ(U0, -) → Γ(U1, -) → Γ(U2, -) → . . . .

As each Γ(Ui, -), i ≥ 0 commutes with filtered colimits so does Hp(X, -).
For (2), let X be qcqs and M ∈ Dcons(X, Λ). We claim that the functor HomΛX

(M, -)
commutes with filtered colimits with terms in D≥0(Xproét, Λ). If M is lisse (=dualizable), 
then HomΛX

(M, -) = (-) ⊗ΛX
M∨ commutes with all colimits. In general, by an induction 

on the finite number of strata in X witnessing the constructibility of M , we reduce to 
the case M = ι!ι

∗M where ι∗M is lisse for some constructible locally closed immersion 
ι : Z ↪→ X. Using standard adjunctions we compute

HomΛX
(ι!ι∗M, -) = ι∗HomΛZ

(
ι∗M, ι!(-)

)
= ι∗

(
ι!(-) ⊗ΛZ

(ι∗M)∨
)
.

Note that ι! is left t-exact (as the right adjoint of the t-exact functor ι!), so preserves 
the subcategory D≥0(X, Λ). In light of (1) applied to ι∗, it remains to show that ι!

commutes with the desired colimits. If ι is an open immersion, then the t-exact functor 
ι! = ι∗ commutes with all colimits. We reduce to the case where ι = i : Z ↪→ X is 
a constructible closed immersion with open complement j : U ↪→ X. Then the fiber 
sequence i∗i! → id → j∗j

∗ and (1) applied to j∗ shows that i! commutes with the desired 
colimits as well. �
Remark 5.4. The condition that the filtered colimit is formed using objects in D≥n(X, Λ)
can not in general be dropped in Lemma 5.3 (see however Lemma 8.5 for a positive result 
in this direction): Assume that RΓ(X, Λ) is concentrated in infinitely many degrees. 
For example, RΓ(Spec(R), Z/2) computes the group cohomology of Gal(C/R) = Z/2
on the trivial module Z/2 which is equal to Z/2 in all even positive degrees. Since 
D(X, Λ) is left-complete [8, Proposition 3.3.3], the natural map ⊕n≥0Λ[n] →

∏
n≥0 Λ[n]

is an equivalence. If H0(X, -) commuted with infinite direct sums, we would obtain a 
contradiction:

⊕
H0 (X,Λ[n]) = H0

⎛
⎝X,

⊕
Λ[n]

⎞
⎠ = H0

⎛
⎝X,

∏
Λ[n]

⎞
⎠ =

∏
H0 (X,Λ[n]) .
n≥0 n≥0 n≥0 n≥0
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5.3. Localizations

In this section, let Λ be a condensed ring and T ⊂ Γ(∗, Λ) a multiplicatively closed 
subset. Then the localization T−1Λ = colimt∈T Λ viewed as a filtered colimit of sheaves 
defines a condensed ring. Since ∗-pullbacks commute with colimits, we have T−1ΛX =
colimt∈T ΛX . Its values on any qcqs U ∈ Xproét are computed as

Γ(U, T−1Λ) = colimt∈T Γ(U,Λ) = T−1Γ(U,Λ).

The second equality is clear, and the first equality is an instance of (5.4). Let Λ∗ :=
Γ(∗, Λ), and denote by T−1Λ∗ its localization.

Proposition 5.5. If X is qcqs, the following functors induced by M⊗Λ∗ T
−1Λ∗ �→ M ⊗ΛX

T−1ΛX are fully faithful:

Dlis(X,Λ) ⊗PerfΛ∗
PerfT−1Λ∗ → Dlis

(
X,T−1Λ

)
and

Dcons(X,Λ) ⊗PerfΛ∗
PerfT−1Λ∗ → Dcons

(
X,T−1Λ

)
.

Proof. For M ∈ Dcons(X, Λ), we denote T−1M = T−1ΛX ⊗ΛX
M . Using that PerfT−1Λ∗

is generated under finite colimits by T−1Λ∗, it is enough to show that the natural map

HomΛX
(M,N) ⊗Λ∗ T−1Λ∗ → HomΛX

(
M,T−1N

)
= HomT−1ΛX

(
T−1M,T−1N

)

is an equivalence for any M, N ∈ Dcons(X, Λ). This follows from Lemma 5.3. �
The functor from T1-topological abelian to condensed abelian groups does not com-

mute with filtered colimits in general. However, the following lemma shows, for example, 
that Q� = colim�× Z� and that Q̄� = colimE/Q� finite E (writing each E as a filtered 
colimit of OE ’s) holds as condensed rings:

Lemma 5.6. Let Λ = colim Λi be a countable filtered colimit of quasi-compact Hausdorff 
topological abelian groups with injective transition maps. Then the induced map of con-
densed abelian groups colimi Λi → Λ is an isomorphism.

Proof. First off, filtered colimits exist in the category of topological abelian groups 
(or topological rings) and are formed by taking the colimit in the category of abelian 
groups (or rings) equipped with its colimit topology. It is enough to show that the map 
colim Γ(S, Λi) → Γ(S, Λ) is an isomorphism for any profinite set S. Injectivity is clear. 
For surjectivity, we claim that every continuous map S → Λ factors through some Λi. As 
injections between quasi-compact Hausdorff spaces are closed embeddings, this follows 
from [8, Lemma 4.3.7]. �
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Remark 5.7. The functor between the ∞-categories of lisse sheaves in Proposition 5.5 is 
not an equivalence in general as the source category does not satisfy descent, compare 
with the discussion above [8, Lemma 7.4.7] (see, however, Theorem 7.7 for a positive 
result for constructible sheaves). More precisely, the failure of essential surjectivity ac-
counts for the difference between the étale and proétale fundamental group. For example, 
let X = P 1/0 ∼ ∞ be the nodal curve over some algebraically closed field. Its proétale 
fundamental group (with respect to the choice of some geometric point) is πproét

1 (X) = Z

equipped with the discrete topology, whereas the étale fundamental group is its profinite 
completion πét

1 (X) = Ẑ. So the category D{0,0}
lis (X, Q�) is the category of (continuous) 

representations of Z on finite-dimensional Q�-vector spaces, whereas the source category 
corresponds to the strict full subcategory of those representations stabilizing a Z�-lattice.

6. t-Structures

The definition of lisse and constructible sheaves is well-adapted to the derived setting. 
The natural t-structure on the ∞-category of all sheaves only restricts to a t-structure 
on the ∞-categories of lisse and constructible sheaves under additional assumptions on 
the scheme X and the condensed ring of coefficients Λ. We denote by

D≥0
lis (X,Λ) := Dlis(X,Λ)∩D≥0(X,Λ) and D≥0

cons(X,Λ) := Dcons(X,Λ)∩D≥0(X,Λ) (6.1)

the full subcategories of Dlis(X, Λ), respectively Dcons(X, Λ), and likewise for the sub-
categories in cohomological degrees ≤ 0. Following [19, Chapter 6, Section 2], we say 
that a (unital, commutative) ring is regular coherent if every finitely generated ideal is 
finitely presented (that is, the ring is coherent [33, Tag 05CU]) and has finite projective 
dimension.

Definition 6.1. A condensed ring Λ is called t-admissible if the underlying ring Λ∗ =
Γ(∗, Λ) is regular coherent and Λ∗ → Γ(S, Λ) is flat for any extremally disconnected 
profinite set S.

We show in Proposition 6.8 that the flatness condition is automatic for a discrete 
topological ring Λ (viewed as a condensed ring as in Example 3.1). Thus, Λ is t-admissible 
if and only if Λ∗ is regular coherent. For example, this holds if Λ∗ is regular Noetherian, 
see Lemma 6.7 (1). Further examples of t-admissible condensed rings include all T1-
topological rings such that Λ∗ is semi-hereditary, see Lemma 6.10. This covers algebraic 
field extensions of E ⊃ Q� for some prime � and their rings of integers OE, but also more 
exotic choices such as the real and complex numbers R, C with their Euclidean topology 
and the ring of adeles AK for some number field K, see Corollary 6.11.

Theorem 6.2. Let Λ be a condensed ring.
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(1) The natural t-structure on D(∗, Λ) restricts to a t-structure on Dlis(∗, Λ) if and only 
if Λ is t-admissible.

(2) If Λ is t-admissible and X has Zariski locally a finite number of irreducible com-
ponents, the ∞-categories in (6.1) define a t-structure on Dlis(X, Λ). Its heart 
Dlis(X, Λ)♥ is the full subcategory of D(X, Λ)♥ of sheaves M that are locally on 
Xproét isomorphic to N ⊗Λ∗ ΛX for some finitely presented Λ∗-module N .

(3) If Λ is t-admissible and every constructible subset in X has Zariski locally finitely 
many irreducible components, then the ∞-categories in (6.1) define a t-structure on 
Dcons(X, Λ). Its heart Dcons(X, Λ)♥ is the full subcategory of D(X, Λ)♥ of sheaves 
M such that, for any open affine U ⊂ X, there exists a finite subdivision of U into 
constructible locally closed subschemes Ui ⊂ U such that M |Ui

∈ Dlis(X, Λ)♥.

Corollary 6.3. Let Λ be a t-admissible condensed ring. Let X be a qcqs scheme having 
locally a finite number of irreducible components. Then M ∈ D(X, Λ) is lisse if and only 
if M is bounded and each cohomology sheaf is locally on Xproét isomorphic to N ⊗Λ∗ ΛX

for some finitely presented Λ∗-module N .

Proof. If M is lisse, then M is bounded (as X is qcqs, see Lemma 4.10) and each 
cohomology sheaf Hp(M), p ∈ Z is lisse, using the t-admissibility of Λ (Theorem 6.2). The 
converse follows from an easy induction on the length using that Dlis(X, Λ) is stable. �
Remark 6.4. Some finiteness assumption on X is necessary in order to have a t-structure 
on Dlis(X, Λ) such that the inclusion into D(X, Λ) is t-exact. As a concrete example 
take X = βN, Λ = Q� and f ∈ Γ(X, Λ) as in Example 4.2. Let K be the kernel of 
f : ΛX → ΛX formed in D(X, Λ)♥. Then RΓ(X, K) = Γ(X, K) = 0, but K �= 0 as its 
stalks at the boundary ∂X = βN\N are non-zero. When combined with the equivalence 
Dlis(X, Λ) ∼= PerfΓ(X,Λ) from Lemma 4.1 (2), this shows that K is not lisse. In view of 
Corollary 4.8, the failure is explained by the lack of the depicted base change property 
in this corollary. As a warning, let us point out that Dlis(X, Λ) ∼= PerfΓ(X,Λ) inherits the 
t-structure from ModΓ(X,Λ) because Γ(X, Λ) = Mapscont(βN, Q�) is regular coherent, 
see Theorem 6.12. However, if one equips Dlis(X, Λ) with this t-structure, the inclusion 
into D(X, Λ) will not be t-exact.

The proof of Theorem 6.2 relies on the following key characterization of regular co-
herent rings. We first provide a well-known auxiliary lemma:

Lemma 6.5. A ring Λ is coherent if and only if the subcategory Mod♥,fp
Λ ⊂ Mod♥

Λ (of the 
abelian category of Λ-modules) spanned by the finitely presented Λ-modules is abelian.

Proof. If Λ is coherent, then Mod♥,fp
Λ is abelian by [33, Tag 05CW]. Conversely, assume 

that Mod♥,fp
Λ is abelian. If I ⊂ Λ is a finitely generated ideal, then Λ → Λ/I is a map 

of finitely presented Λ-modules, and hence I = ker(Λ → Λ/I) is finitely presented as 
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well. Here we used that the inclusion Mod♥,fp
Λ ⊂ Mod♥

Λ is left-exact. This shows that Λ
is coherent. �
Proposition 6.6. For any ring Λ, the following are equivalent:

(1) The natural t-structure on ModΛ restricts to a t-structure on PerfΛ.
(2) The ring Λ is coherent and every finitely presented Λ-module has finite Tor dimen-

sion.
(3) The ring Λ is coherent and every finitely generated ideal has finite Tor dimension.
(4) The ring Λ is regular coherent.

Proof. We show that (1) implies (2). By the assumption (1) there are inclusions

Mod♥,fp
Λ ⊂ Perf♥Λ ⊂

(
Mod♥

Λ
)ω (6.2)

of full subcategories of Mod♥
Λ of finitely presented Λ-modules at the left and of compact 

objects at the right: The first inclusion means that every finitely presented Λ-module 
is of the form H0(M) for some M ∈ PerfΛ which is clear. For the second inclusion, we 
note that any perfect complex is compact in ModΛ [33, Tag 07LT] and that the inclusion 
Mod♥

Λ ⊂ ModΛ is full and preserves filtered colimits. It is well-known that the categories 
at the left and at the right in (6.2) agree. Thus, both inclusions are equalities. Being 
the heart of a t-structure, Mod♥,fp

Λ is abelian, so that Λ is coherent (Lemma 6.5). The 
inclusion M ∈ Mod♥,fp

Λ = Perf♥Λ ⊂ PerfΛ shows that every finitely presented Λ-module 
M is perfect. By [33, Tag 0658], this is equivalent to M being pseudo-coherent (or, almost 
perfect) and of finite Tor dimension. This implies (2).

Conversely, assume that (2) holds. Then Mod♥,fp
Λ is abelian (Lemma 6.5) so that 

every Λ-module of the form H0(M), M ∈ PerfΛ is finitely presented. Also, every finitely 
presented Λ-module is pseudo-coherent by [33, Tag 0EWZ] and, hence perfect since it 
has finite Tor dimension [33, Tag 0658]. So PerfΛ is stable under the truncation functors 
τ≤n, τ≥n for all n ∈ Z. This implies (1) since the other properties of a t-structure are 
inherited from ModΛ.

It is clear that (2) implies (3). We now show the converse implication. Let M be a 
finitely presented Λ-module. We need to show that there exists an integer n > 0 (possibly 
depending on M) such that Hp(N⊗ΛM) = 0 for all p > n and N ∈ Mod♥

Λ . The argument 
is similar to the proof of [33, Tag 00HD]: As M is finitely presented, there is some m ≥ 1
and an exact sequence 0 → M ′ → Λm → M → 0. Then M ′ is finitely presented as well 
because Λ is coherent (so Mod♥,fp

Λ is abelian). We reduce to the case where M ⊂ Rm is 
a submodule. If m = 1, then M is a finitely generated ideal and we are done. If m ≥ 2, 
then there is an exact sequence

0 → M ′ → M → M ′′ → 0,



T. Hemo et al. / Advances in Mathematics 429 (2023) 109179 31
where M ′ = M ∩ (R ⊕ 0m−1) ⊂ R and M ′′ ⊂ Rm−1 are submodules. By induction, 
there are finitely many finitely generated ideals in R whose Tor dimension bound the 
Tor dimension of M . This implies (2).

It remains to prove the equivalence of (3) and (4). If Λ is as in (3), then every 
finitely generated ideal admits a finite resolution by finite projective modules, using the 
equivalent characterization (1). Thus, (3) implies (4). Conversely, any finite projective 
resolution is K-flat. So ideals admitting such resolutions are of finite Tor dimension, 
proving (4) implies (3). �
Proof of Theorem 6.2. First, assume that Λ is t-admissible and that X has locally a 
finite number of irreducible components, respectively every constructible subset has so. 
We show that the categories Dlis(X, Λ), respectively Dcons(X, Λ) are closed under the 
truncation functors τ≤0, and hence inherit the t-structure from D(X, Λ). Since restriction 
commutes with truncation functors, we reduce to the case of Dlis(X, Λ) with X being 
affine and connected with finitely many irreducible components. So pick M ∈ Dlis(X, Λ). 
We need to show that τ≤0M is lisse as well. For any w-contractible affine cover U ∈
Xproét, there is an isomorphism M |U � N⊗Λ∗ΛU for some N ∈ PerfΛ∗ , see Theorem 4.13. 
We compute

(τ≤0M)|U ∼= τ≤0M |U � τ≤0 (N ⊗Λ∗ ΛU

) ∼=−→ τ≤0N ⊗Λ∗ ΛU ,

where the last map is checked to be an isomorphism by evaluating at w-contractible 
affines V ∈ Uproét and using the flatness of Λ∗ → Γ(V, Λ) = Γ(π0V, Λ). Note that 
RΓ(V, -) is t-exact by Lemma 4.1 (1), that π0(V ) is extremally disconnected [8, Lemma 
2.4.8], and that Λ is assumed to be t-admissible. Further, since Λ∗ is regular coherent, 
Proposition 6.6 shows that τ≤0N ∈ PerfΛ∗ . So τ≤0M is proétale-locally perfect-constant, 
thus lisse. Also, the description of the hearts in (2) and (3) follows immediately from 
(6.2).

It remains to show that t-admissibility is necessary in order to have the restricted 
t-structure on lisse sheaves on the point. So assume that the natural t-structure on 
D(∗, Λ) restricts to a t-structure on Dlis(∗, Λ). In particular, the latter category is closed 
under truncation in D(∗, Λ). As RΓ(∗, -) is t-exact, we see that PerfΛ∗ is closed under 
truncation in ModΛ∗ . By the equivalent characterization in Proposition 6.6, the ring 
Λ∗ is regular coherent. Similarly, using the t-exactness of RΓ(S, -) for any extremally 
disconnected profinite set S, we see that the functor PerfΛ∗ → ModΓ(S,Λ), N �→ N ⊗Λ∗

Γ(S, Λ) is t-exact. We claim that TorΛ∗
1 (Γ(S, Λ), Λ∗/I) = 0 for all finitely generated 

ideals I ⊂ Λ∗ which implies flatness of Λ∗ → Γ(S, Λ) by [33, Tag 00M5]. Indeed, as Λ∗ is 
regular coherent, we see Λ∗/I ∈ PerfΛ∗ when placed in cohomological degree 0, say. By 
assumption, (Λ∗/I) ⊗Λ∗ Γ(S, Λ) is concentrated in degree 0 so that we get the desired 
vanishing. We conclude that Λ is t-admissible which finishes the proof. �
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We now exhibit examples of t-admissible condensed rings. Throughout, we freely use 
the equivalent characterizations of regular coherent rings in Proposition 6.6. Recall that 
a semi-hereditary ring is one where every finitely generated ideal is projective.

Lemma 6.7. There holds:

(1) Regular Noetherian rings and semi-hereditary rings are regular coherent.
(2) Regular coherent rings are stable under the following operations: localizations, finite 

products and filtered colimits with flat transition maps.
(3) Semi-hereditary rings are stable under the following operations: localizations, arbi-

trary products and filtered colimits.

Proof. Clearly, semi-hereditary rings are regular coherent: every finitely generated pro-
jective module is finitely presented. The remainder of part (1) follows from [33, Tag 066Z]
and [19, Theorem 6.2.1].

For (2), let Λ = colim Λi be a filtered colimit with flat transition maps. We observe 
that every finitely generated ideal I ⊂ Λ = colim Λi is of the form Ij ⊗Λj

Λ for some 
finitely generated ideal Ij ⊂ Λj , using the flatness of the transition maps. Thus, if Ij
is finitely presented and of finite Tor dimension as a Λj-module, so is I as a Λ-module. 
Similarly, given a finitely generated ideal in a localization I ⊂ T−1Λ, there exists a 
finitely generated ideal J ⊂ Λ such that I = T−1J . So, if J is finitely presented and of 
finite Tor dimension, so is I. Finite products are easy and left to the reader.

For (3), we use [31, Section 4.2, Proposition] for products. The remaining arguments 
are as above. Note that Ij⊗Λj

Λ there is automatically an ideal in Λ since Ij is projective, 
hence flat, so no flatness of Λj → Λ is needed. �

Now let Λ be a condensed ring. Recall that if Λ is associated with a topological ring, 
we have Γ(S, Λ) = Mapscont(S, Λ) for any profinite set S, see Example 3.1. For discrete 
rings, the situation is as nice as possible.

Proposition 6.8. For a discrete condensed ring Λ, the map Λ∗ → Γ(S, Λ) is flat for any 
profinite set S. Thus, Λ is t-admissible if and only if Λ∗ is regular coherent.

Proof. Write S = limSi as a cofiltered limit of finite sets. As Λ is discrete, we have

Γ(S,Λ) = colim Γ(Si,Λ) = colim ΛSi
∗

which is flat, being a filtered colimit of free, hence flat Λ∗-modules. �
Remark 6.9. Combining the above proof with Lemma 6.7 (2) shows that, more generally, 
Γ(S, Λ) is regular coherent for any profinite set S provided Λ∗ is so.

The above shows that for any � > 0, lisse sheaves with Z/�2-coefficients are not closed 
under truncation, which bars the attempt to construct the t-structure for Z�-coefficients 
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by a direct limit argument. We do easily get the t-structure for Λ = Z� using the following 
method, though.

Lemma 6.10. Let Λ be the condensed ring associated with a T1-topological ring. If the 
underlying ring Λ∗ is semi-hereditary, then Λ is t-admissible.

Proof. Lemma 6.7 (1) shows that Λ∗ is regular coherent. We claim that Λ∗ → Γ(S, Λ) is 
flat for any profinite set S. Since Λ is associated with a topological ring, the natural map 
Γ(S, Λ) →

∏
s∈S Λ∗, f �→ (f(s))s∈S is injective. So Γ(S, Λ) is a torsionless Λ∗-module in 

the sense of Bass [26, Definition 4.64], and hence flat by a theorem of Chase [26, Theorem 
4.67]. �

Recall that a Prüfer domain is, by one of several equivalent definitions, a semi-
hereditary domain. All fields are Prüfer domains, as are the rings of integers OE of 
algebraic extension fields E ⊃ Q�.

Corollary 6.11. The condensed rings associated with the following T1-topological rings 
are semi-hereditary, hence t-admissible:

(1) All T1-topological Prüfer domains.
(2) The adeles AK , the finite adeles AK,f and the profinite completion ÔK for any finite 

field extension K ⊃ Q with ring of integers OK .

Proof. (1) follows directly from Lemma 6.10. As localizations and products of semi-
hereditary rings are semi-hereditary by Lemma 6.7 (3), part (2) follows from the formulas 
ÔK =

∏
p
ÔK,p and AK,f = ÔK [(K\{0})−1] and AK � AK,f × Rr × Cs for some 

r, s ≥ 0. �
Finally, let us mention the following result due to Brookshear [7], De Marco [15], 

Neville [30] and Vechtomov [35] on the structure of rings of continuous functions. Its 
corollary below is used in [22] (see Theorem 7.7) to compute the category of constructible 
Q�-sheaves:

Theorem 6.12. Let Λ be one of the following topological rings:

(1) The real numbers R or the complex numbers C with their Euclidean topology
(2) An algebraic field extension E ⊃ Q� for some prime �, or its ring of integers OE.
(3) The adeles AK , the finite adeles AK,f or the profinite completion ÔK for some finite 

field extension K ⊃ Q with ring of integers OK .

Then, for any extremally disconnected profinite set S, the ring Γ(S, Λ) = Mapscont(S, Λ)
is semi-hereditary. In particular, it is regular coherent.
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Proof. For (1), let Λ denote either R or C. If U ⊂ S is open, then its topological closure 
Ū is again open [33, Tag 08YI]. In particular, S is a Λ-basically disconnected Tychonoff 
(=T3 1

2
) space or, equivalently, every finitely generated ideal in Γ(S, Λ) is principal and 

projective, see [19, Theorems 8.4.3, 8.4.4] for Λ = R and [34, Theorem 1], [35, Theorem 
13.1] for Λ = C.

To prove part (2), the key claim is that for a finite extension E/Q�, the ring Γ(S, OE)
is semi-hereditary, i.e., every finitely generated ideal is principal and projective. This 
implies the claim for the quotient field E and also infinite algebraic extensions by 
Lemma 6.7.

First, we show that every ideal generated by two elements f, g ∈ Γ(S, OE) is principal. 
Let us denote by | - | : E → R≥0 the normalized valuation so that OE is the subring of 
elements x ∈ E with |x| ≤ 1. Let U = {s ∈ S | |f(s)| > |g(s)|} and V = {s ∈ S | |f(s)| <
|g(s)|} which are open disjoint sets in S. As S is extremally disconnected, their topological 
closures Ū , V̄ are clopen (=closed and open) and still disjoint [33, Tag 08YK]. The 
characteristic function eŪ on Ū defines an idempotent in Γ(S, OE). We claim that the 
ideal (f, g) is the principal ideal generated by h := eŪf + (1 − eŪ )g ∈ Γ(S, OE). It 
is clear that h ∈ (f, g). Conversely, we note that |f(s)|, |g(s)| ≤ |h(s)| for all s ∈ S

by construction. Using the equivalent characterizations in [35, Theorem 12.2], we obtain 
functions a, b ∈ Γ(S, E) with f = a ·h and g = b ·h. Comparing valuations, we necessarily 
have |a(s)|, |b(s)| ≤ 1 for all s ∈ S, that is, a, b ∈ Γ(S, OE). So (f, g) = (h) as ideals in 
Γ(S, OE).

It remains to show that every principal ideal is projective. More generally, the proof 
of [19, Theorem 8.4.4] shows that this holds for any T1-topological ring Λ without zero 
divisors: For any f ∈ Γ(S, Λ), there is a short exact sequence

0 −→ Ann(f) −→ Γ(S,Λ) f×−→ (f) −→ 0, (6.3)

where Ann(f) = {g | g · f = 0} is the annihilator ideal of f . We show that (6.3) splits so 
that (f) is projective, being a direct summand of Γ(S, Λ). Let U = {s ∈ S | f(s) �= 0}. As 
Λ is T1, this subset is open and its closure Ū ⊂ S is clopen. The characteristic function 
eS\Ū on S\Ū defines an idempotent in Γ(S, Λ). We claim that Ann(f) = (eS\Ū ) which 
will imply that (6.3) splits. Clearly, eS\Ū · f = 0 by construction of S\Ū . Conversely, 
if g · f = 0 for some g ∈ Γ(S, Λ), then g|U = 0 because Λ is without zero divisors. As 
g−1(0) is closed in S, we still have g|Ū = 0. Hence, g = g · eS\Ū , that is, g ∈ (S\Ū).

For (3), we apply Lemma 6.7 which shows that

Γ(S, ÔK) =
∏
p

Γ(S, ÔKp
)

is semi-hereditary. Here p runs through the places of K. Next, writing AK,f = ÔK [T−1], 
T = K\{0} as a localization and using Lemma 5.6, we see that Γ(S, AK,f) =
Γ(S, ÔK)[T−1] is semi-hereditary. Finally, AK � AK,f × Rr × Cs for some r, s ≥ 0
implies the result in this case as well. �
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Corollary 6.13. Let S be an extremally disconnected profinite set. Let E ⊃ Q� and AK,f
be as in Theorem 6.12. Then every finite projective module over Γ(S, E), respectively 
over Γ(S, AK,f) extends to a finite projective module over Γ(S, OE), respectively over 
Γ(S, ÔK).

Proof. All rings are semi-hereditary by Theorem 6.12. Every finite projective module 
M over a semi-hereditary ring R is a direct sum of finitely generated (hence projective) 
ideals [26, Theorem 2.29]. Hence, it is enough to show that every finitely generated ideal 
extends. This is clear from Γ(S, E) = Γ(S, OE)[�−1] and Γ(S, AK,f) = Γ(S, ÔK)[T−1], 
T = K\{0} by multiplying with a common denominator of the continuous functions 
generating the ideal. �
7. Comparison results

We compare our definition with classical definitions for discrete rings, adic rings and 
their localizations. The upshot is that we recover [8, Definition 6.3.1, Definition 6.5.1]
for discrete and adic rings, and [8, Definition 6.8.8] for algebraic extensions of Q�. In 
Section 7.2, we give some examples and make the connection to more classical approaches 
[13, (1.1)], [23, Exposé XIII, §4], [33, Tag 0F4M], see also [24, II.5, Appendix A].

7.1. Discrete rings

In this section, let Λ be the condensed ring associated with a discrete topological ring, 
also denoted by Λ, see Example 3.1. Then, for any scheme X, the sheaf ΛX = Λ is the 
constant sheaf of rings on Xproét associated with Λ. The morphism onto the étale site 
ν : Xproét → Xét induces a pullback functor

ν∗ : D(Xét,Λ) → D(X,Λ).

Recall from [10, Remark 6.3.27] that an object M ∈ D(Xét, Λ) is dualizable if and only 
if there exists a covering {Ui → X} in Xét such that each restriction M |Ui

is constant 
with perfect values. Let us temporarily denote by

Dlis(Xét,Λ) ⊂ Dcons(Xét,Λ)

the full subcategories of D(Xét, Λ) of objects which are lisse (=dualizable in D(Xét, Λ), by 
definition), respectively Zariski locally lisse along a finite subdivision into constructible 
locally closed subschemes.

Proposition 7.1. For a discrete ring Λ, the functor ν∗ induces equivalences

Dlis(Xét,Λ)
∼=−→ Dlis(X,Λ) and

Dcons(Xét,Λ)
∼=−→ Dcons(X,Λ).
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Remark 7.2. If X is qcqs and Λ Noetherian, then Dcons(Xét, Λ) = Dctf(Xét, Λ) coincides 
with the full subcategory of D(Xét, Λ) of constructible Λ-sheaves of finite Tor-dimension. 
This can be deduced from the characterization in [33, Tag 03TT].

We need some preparation before giving the proof of Proposition 7.1.

Lemma 7.3. Recall that Λ is discrete. For a profinite set S = limSi there is an equivalence

colim PerfΓ(Si,Λ)
∼=−→ PerfΓ(S,Λ).

Here the transition functors are given by (-) ⊗Γ(Si,Λ) Γ(Sj , Λ) for j ≥ i.

Proof. Any continuous map S → Λ factors through some S → Si because S is quasi-
compact and Λ discrete. Hence, Γ(S, Λ) = colim Γ(Si, Λ) is a filtered colimit. So we are 
done by Lemma 2.2 (1). �

For N ∈ ModΛ, recall that N denotes the associated constant sheaf of Λ-modules on 
Xproét. If N ∈ PerfΛ, then RΓ(X, N) ∼= RΓ(X, Λ) ⊗Λ∗ N shows that

N ∼= (N ⊗Λ∗ Γ(X,Λ))X ∈ D(X,Λ). (7.1)

Corollary 7.4. For a discrete coefficient ring Λ, an object M ∈ D(X, Λ) is lisse if and 
only if there exists a covering {Ui → X} in Xproét such that each restriction M |Ui

is 
constant with perfect values.

Proof. Let us assume that M is lisse (the other direction is clear). By Lemma 4.5, we 
may assume that X is w-contractible and affine. In this case, P := π0X is a profinite 
set, say P = limPi. Then Lemma 7.3 together with Lemma 4.1 (2) give equivalences

Dlis(X,Λ) ∼= PerfΓ(X,Λ) = PerfΓ(P,Λ) ∼= colim PerfΓ(Pi,Λ),

using that Γ(X, Λ) = Γ(P, Λ). In down to earth terms, we find some N ∈ PerfΓ(Pi,Λ)
together with an isomorphism

(
N ⊗Γ(Pi,Λ) Γ(X,Λ)

)
X

∼= M.

The fibers of the projection X → P → Pi induce a finite subdivision of X into clopen 
subsets. After Zariski localizing on X we may therefore assume that Pi = ∗. It follows 
from (7.1) that N ∼= M is constant. �
Proof of Proposition 7.1. Since ν∗ : D(Xét, Λ) → D(X, Λ) is monoidal, it induces func-
tors

Dlis(Xét,Λ) → Dlis(X,Λ) and Dcons(Xét,Λ) → Dcons(X,Λ), (7.2)
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compatible with étale localization on X. By étale descent (Zariski descent is enough), 
we may assume that X is affine. The functor ν∗ is fully faithful when restricted to 
bounded below complexes by [8, Corollary 5.1.6]. Since X is quasi-compact, any object 
in Dlis(Xét, Λ) and hence in Dcons(Xét, Λ) is bounded. This implies the full faithfulness 
of the functors in (7.2).

We first show the essential surjectivity for lisse sheaves. Corollary 7.4 shows that 
any M ∈ Dlis(X, Λ) is perfect-locally constant on Xproét. Clearly, any constant sheaf in 
D(X, Λ) arises as ν∗-pullback from D(Xét, Λ), that is, it is classical in the terminology 
of [8, §5]. Therefore, locally on Xproét, M is classical. For sheaves in a single degree, this 
holds by [8, Lemma 5.1.4]. The same proof shows this claim for general bounded (below) 
complexes, see also [8, above Remark 5.1.7]. Finally, by [8, Lemma 6.3.13] the sheaf M
necessarily arises as pullback of a locally on Xét constant sheaf with perfect values, that 
is, from an object in Dlis(Xét, Λ).

It remains to show the essential surjectivity on constructible sheaves. If ι : Z ↪→ X is 
a constructible locally closed subset, the functors ι∗, ι! commute with ν∗, see [8, Lemma 
6.2.3 (4)] for ι!. Using the full faithfulness of ν∗ on bounded complexes, we reduce 
by induction on the number of constructible locally closed strata to the case of lisse 
sheaves. �
7.1.1. Adic rings

In this section, let Λ be the condensed ring associated with a Noetherian ring, also 
denoted by Λ, complete for the topology defined by an ideal I ⊂ Λ, see Example 3.1. 
Then each quotient Λ/Ii is discrete and Λ = limi≥1 Λ/Ii as condensed rings so that 
Section 5.1 applies. In the following, all limits are derived unless mentioned otherwise.

An object M ∈ D(X, Λ) is called derived I-complete if the natural map M →
lim(M ⊗ΛX

(Λ/Ii)X) is an equivalence. Let us temporarily denote by

Dlis(X, Λ̂) ⊂ Dcons(X, Λ̂)

the full subcategories of D(X, Λ) of objects M which are derived I-complete and such 
that its reduction M ⊗ΛX

(Λ/I)X is lisse, respectively constructible in D(X, Λ/I). By 
Proposition 7.1 applied to the discrete ring Λ/I, the homotopy category of Dcons(X, Λ̂)
agrees with the category defined in [8, Definition 6.5.1].

Lemma 7.5. Let M ∈ D(X, Λ). If M ⊗ΛX
(ΛX/I)X is lisse (respectively, constructible), 

then so is M ⊗ΛX
(Λ/Ii)X for all i ≥ 1.

Proof. Using Proposition 7.1 for Λ/I, one sees by induction on i that each reduc-
tion M ⊗ΛX

(Λ/Ii)X lies in the essential image of the functor ν∗ : D(Xét, Λ/Ii) →
D(Xproét, Λ/Ii) and is étale locally constant. Passing to a suitable étale covering of 
X, our claim for lisse sheaves reduces to the corresponding statement for Λ/Ii-modules 
and the nilpotent ideal I/Ii, see [33, Tag 07LU]. For constructible sheaves M , it follows 
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that any stratification witnessing the constructibility of M ⊗ΛX
(Λ/I)X induces such a 

stratification for M ⊗ΛX
(Λ/Ii)X . �

Proposition 7.6. There are equalities

Dlis(X,Λ) = Dlis(X, Λ̂) and Dcons(X,Λ) = Dcons(X, Λ̂),

as full subcategories of D(X, Λ).

Proof. The canonical functor Dlis(X, Λ̂) → lim Dlis(X, Λ/Ii) (and likewise for con-
structible sheaves) afforded by Lemma 7.5 is fully faithful by [8, Lemma 3.5.7 (2)]. It is 
essentially surjective by Proposition 5.1, so we are done again using Proposition 5.1. �
7.2. Classical approaches and some examples

Fix a prime � and a finite extension E/Q�. Its ring of integers OE has a unique maximal 
ideal m, for which we have OE = limOE/m

n. The latter is a profinite topological ring, 
while E = OE [�−1] carries the (usual) colimit topology so that OE ⊂ E is an open 
subring.

For a scheme X, let use denote by Dctf(X, OE/m
n) the ∞-category of constructible 

étale OE/m
n-sheaves of finite Tor-dimension. It is classical to consider the limit

Db
c (X,OE) = lim Dctf(X,OE/m

n),

that is, the category of compatible systems of such objects. From here one usually passes 
to E-coefficients by inverting �:

Db
c (X,E) = Db

c (X,OE) ⊗PerfOE
PerfE

This tensor product agrees with the idempotent completion of the localization
Db

c (X, OE)[�−1]. The following result gives the comparison with [23, Exposé XIII, §4], 
[33, Tag 0F4M] and [8, Definition 6.8.8]:

Theorem 7.7. For any qcqs scheme X, there are natural equivalences

Dcons(X,OE/m
n) ∼= Dctf(X,OE/m

n),

Dcons(X,OE) ∼= Db
c (X,OE) and

Dcons(X,E) ∼= Db
c (X,E).

Proof. By Proposition 7.1 and Remark 7.2, the pullback of sheaves along Xproét → Xét
induces equivalences Dctf(X, OE/m

n) = Dcons(Xét, OE/m
n) ∼= Dcons(X, OE/m

n). Pass-
ing to the limits, we obtain an equivalence Db

c (X, OE) ∼= Dcons(X, OE) by Propo-
sition 5.1. Finally, we have a fully faithful embedding Db

c (X, E) ↪→ Dcons(X, E) by 
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Proposition 5.5 which is essentially surjective by [22, Corollary 2.4]. The latter uses 
Corollary 6.13. Alternatively, if X is topologically Noetherian, one can use Corollary 6.3
to see that Dcons(X, E) agrees with the category defined in [8, Definition 6.8.8]. In this 
case, the result also follows from [8, Proposition 6.8.14]. �
Remark 7.8. Likewise, one can show the following formula for any qcqs scheme X with 
coefficients in the finite adeles AQ,f :

Dcons(X,AQ,f) ∼=
(
lim Dctf(X,Z/n)

)
⊗Perf

Ẑ
PerfAQ,f .

If X is of finite type over a finite or separably closed field, then the homotopy category 
of Dcons(X, Z�) is the 2-limit of the categories Dctf(X, Z/�n) considered in [13, Equation 
(1.1.2)], see also [24, Section II.6]. For the relation with [16], the reader is referred to [8, 
Section 5.5], in view of Section 7.1.1. Also, Dcons(X, Z�) is equivalent to the ∞-category 
defined in [18, Definition 2.3.2.1] when X is quasi-projective over an algebraically closed 
field. We leave the details to the reader.

We finally turn to Q̄� or Z̄� coefficients. Recall that Z̄� = colimOE and Q̄� = colimE

carry the colimit topology. We recover the classical approach [13, (1.1.3)], [24, II.5, 
Appendix A]:

Lemma 7.9. For any qcqs scheme X, there are natural equivalences

colimE/Q� finite Db
c (X,OE)

∼=−→ Dcons(X, Z̄�) and

colimE/Q� finite Db
c (X,E)

∼=−→ Dcons(X, Q̄�).

Proof. This immediate from the above discussion using Proposition 5.2. �
Remark 7.10 (The 6 functors). Under the usual finiteness, excellency and �-coprimality 
assumptions on the schemes, one obtains a 6 functor formalism along the usual lines for 
the categories of constructible sheaves. In light of Theorem 7.7, the reader is referred to 
the treatment in [8, Section 6.7].

8. Ind-lisse and ind-constructible sheaves

Let X be a qcqs scheme and Λ a condensed ring. In this section, we impose the 
following finiteness assumption on the Λ-cohomological dimension: there exists an integer 
dX ≥ 0 such that for all p > dX , all pro-étale affines U = limUi ∈ Xproét and all sheaves 
N ∈ D(X, Λ)♥ of the form N = H0(M) for some M ∈ Dcons(X, Λ) we have the vanishing

Hp(U,N) = 0. (8.1)
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Examples include finite type schemes X over finite or separably closed fields with coeffi-
cients Λ either a discrete torsion ring, an algebraic extension E/Q� or its ring of integers 
OE , see Lemma 8.6.

Recall from Section 3 that the ∞-category D(X, Λ) admits small (co-)limits.

Definition 8.1. A sheaf M ∈ D(X, Λ) is called ind-lisse, respectively ind-constructible if 
it is equivalent to a filtered colimit of lisse, respectively constructible Λ-sheaves.

The full subcategories of D(X, Λ) of ind-lisse, respectively ind-constructible sheaves 
are denoted by

Dindlis(X,Λ) ⊂ Dindcons(X,Λ).

Both ∞-categories are naturally commutative algebra objects in PrSt
Γ(X,Λ), that is, 

Γ(X, Λ)-linear symmetric monoidal stable presentable ∞-categories, see Corollary 8.3
for the properties stable and presentable. Recall the notion of compact objects [27, Sec-
tion 5.3.4].

Proposition 8.2. An object M ∈ Dindcons(X, Λ) is compact if and only if M is con-
structible, and likewise for (ind-)lisse sheaves. Consequently, passing to compact objects 
induces equalities

Dindcons(X,Λ)ω = Dcons(X,Λ) and Dindlis(X,Λ)ω = Dlis(X,Λ).

Before giving the proof, let us point out the following corollary which, for example, 
gives the comparison with the presentable categories of �-adic sheaves considered in [18, 
§2.3.2]. It is noteworthy since the condition in (8.1) is weaker than requiring constructible 
sheaves to be compact objects in D(X, Λ).

Corollary 8.3. The inclusion Dcons(X, Λ) ⊂ Dindcons(X, Λ) extends to a colimit-
preserving equivalence

Ind
(
Dcons(X,Λ)

) ∼=−→ Dindcons(X,Λ),

and likewise for (ind-)lisse sheaves.

Proof. By [27, Proposition 5.3.5.11], the functor is fully faithful because all objects of 
Dcons(X, Λ) are compact in Dindcons(X, Λ). The essential surjectivity is immediate from 
the definition. �
Remark 8.4. If Λ is a discrete ring, then Corollary 8.3 together with Proposition 7.1
shows that Dindcons(X, Λ) ∼= D(Xét, Λ), see also [8, Proposition 6.4.8]. In particular, the 
natural t-structure on D(X, Λ) restricts to a t-structure on Dindcons(X, Λ) even if Λ is 
not t-admissible.
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The proof of Proposition 8.2 builds on the following lemma that crucially relies on 
assumption (8.1), see Remark 5.4:

Lemma 8.5. The following functors commute with filtered colimits with terms in 
Dcons(X, Λ):

(1) f∗ : D(X, Λ) → D(Y, Λ) for map f : X → Y between qcqs schemes satisfying (8.1);
(2) HomΛX

(M, -) : D(X, Λ) → D(X, Λ) for any qcqs X scheme satisfying (8.1) and M ∈
Dcons(X, Λ).

In particular, under the conditions in (2), the functor

HomΛX
(M, -) = RΓ

(
X,HomΛX

(M, -)
)
: D(X,Λ) → ModΓ(X,Λ)

commutes with such colimits as well.

Proof. Assuming that part (1) holds, the rest is proven analogously to Lemma 5.3. For 
(1), let {Mi} be a filtered system of constructible Λ-sheaves Mi on X. We need to show 
that the map

colim Hp ◦ f∗(Mi) → Hp ◦ f∗(colimMi),

is an equivalence in D(Y, Λ)♥ for every p ∈ Z, Hp := τ≤p ◦ τ≥p. By Lemma 5.3, this 
holds true if all Mi lie in D≥n(X, Λ) for some n ∈ Z. So it is enough to show that there 
exists n ∈ Z such that the map Hp ◦ f∗(τ≥nM) → Hp ◦ f∗(M) is an isomorphism for 
all M ∈ Dindcons(X, Λ). Evaluating at any w-contractible pro-étale affine V ∈ Yproét, we 
obtain the map on proétale cohomology groups

Hp
(
X ×Y V, τ≥nM

)
→ Hp

(
X ×Y V,M

)

Using the left-completeness of D(X, Λ) [8, Proposition 3.3.3], we are reduced to showing: 
there exists some integer dX ≥ 0 such that Hp(U, N) = 0 for all p > dX , all qcqs 
U ∈ Xproét that admit an open cover by pro-étale affines and all N ∈ D(X, Λ)♥ of 
the form N = H0(M) for some M ∈ Dindcons(X, Λ). Since Hp(U, -) commutes with 
filtered colimits in D(X, Λ)♥ (Lemma 5.3), we may assume that N = H0(M) for some 
M ∈ Dcons(X, Λ). By an induction on the finite number pro-étale affines covering U , 
passing through the case of separated U first, we may assume that U = limUi is pro-
étale affine. So the desired integer dX exists by our assumption (8.1). �
Proof of Proposition 8.2. We only treat (ind-)constructible sheaves as the argument for 
(ind-)lisse sheaves is completely analogous.

To show that M ∈ Dcons(X, Λ) is compact in Dindcons(X, Λ), we need to show that 
the natural map
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colim HomΛX
(M,Nj) → HomΛX

(M, colimNj)

is an equivalence for every filtered system {Nj} of constructible Λ-sheaves. This follows 
from Lemma 8.5.

Conversely, let M = colimMi ∈ Dindcons(X, Λ) be a compact object. Then the identity 
idM : M → M factors through some Mi, presenting M as a direct summand of Mi. As 
Dcons(X, Λ) is idempotent complete, we see that M is constructible. �
Lemma 8.6. The pair (X, Λ) satisfies (8.1) in each of the following cases:

(1) The scheme X is of finite type over a finite or separably closed field and Λ is either 
a discrete torsion ring, an algebraic field extension E ⊃ Q� or its ring of integers 
OE.

(2) The scheme X is a qcqs scheme in characteristic p > 0 and Λ is either a discrete 
p-torsion ring, an algebraic field extension E ⊃ Qp or its ring of integers OE.

Proof. Let U = limUi ∈ Xproét be pro-étale affine, and let N = H0(M) for some 
M ∈ Dcons(X, Λ). The case where Λ is an algebraic extension E ⊃ Q� or its ring of 
integers OE is reduced to the case of finite extensions (Lemma 7.9) and further to the 
case of finite discrete torsion rings (Theorem 7.7). It remains to treat the case where Λ is 
a discrete torsion ring. Then Hp(U, N) = colim Hp(Ui, N) using Proposition 7.1 and the 
continuity of the étale site [33, Tag 03Q4]. So part (1) follows from Artin vanishing (see 
[33, Tag 0F0V]), noting that the abelian sheaf underlying N is torsion and that separably 
closed fields (respectively, finite fields) have cohomological dimension 0 (respectively, 1). 
For (2), we claim that Hi(X, N) = 0 for all i > 2, affine schemes X = SpecR in 
characteristic p > 0 and p-torsion abelian sheaves N . Using dévissage arguments [33, 
Tags 09Z4, 03SA], it suffices to consider a constructible Fp-sheaf N . By topological 
invariance of the étale site, we may assume R to be perfect. There is a fully faithful t-
exact functor from the ∞-category Dcons(X, Fp) to the derived category of modules over 
R[F ] defined in [5, Notation 2.1.5], see Theorem 12.1.5 there. This functor sends the 
constant sheaf Fp to R, which has a length two resolution by projective R[F ]-modules, 
see [5, Section 3]. This shows the claim. �
Corollary 8.7. Let U• → X be a hypercover such that Un is quasi-compact étale for all 
n ≥ 0. Then the natural functor

Dindcons(X,Λ)
∼=−→ Tot

(
Dindcons(U•,Λ)

)

is an equivalence. If Un → X is finite étale, then the same holds for ind-lisse sheaves.

Proof. By the descent equivalence Tot
(
D(U•, Λ)

)
= D(X, Λ), there are full inclusions

Dindcons(X,Λ) ⊂ Tot
(
Dindcons(U•,Λ)

)
⊂ D(X,Λ).
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It remains to show: if M ∈ D(X, Λ) such that M |U is ind-constructible, then M is 
so. We denote j• : U• → X. For every M ∈ D(X, Λ), we have a canonical equivalence 
|(j•)! ◦ j∗•M | ∼−→ M . Since U → X is finitely presented étale, the same is true for every 
jn : Un → X. In particular, each functor (jn)! preserves the constructible subcategories 
(Corollary 4.6). So, if j∗nM can be written as a filtered colimit of constructible objects, 
then the same is true for (jn)!j∗nM . This shows M ∈ Dindcons(X, Λ).

Finally, if U → X is finite étale, then each functor (jn)! preserves the lisse subcate-
gories (Corollary 4.6), and we can proceed as before. �
Appendix A. The condensed shape of the proétale topos

Let X be a qcqs scheme, and Λ a condensed ring. In this appendix, we explain how 
the formalism developed above gives a simple realization of lisse Λ-sheaves on X as 
representations of the condensed shape associated to Xproét valued in perfect Λ-modules. 
This is related to the stratified shape developed in [2,3,36]. This appendix is not used 
throughout the manuscript. We include the material as it gives another point of view on 
the ∞-categories of lisse sheaves Dlis(X, Λ) introduced in Section 3.

We take the following definition of the condensed shape which is similar to the classical 
definitions of Artin–Mazur–Friedlander. Denote by HC(X) the ∞-category of hypercov-
erings in Xproét whose objects consist of hypercovers U• → X in X with Un qcqs for 
all n ≥ 0. For precise definitions, the reader is referred to [14] and [21, §5]. The ∞-
category HC(X) is cofiltered by [14, Proposition 5.1]. The condensed shape of Xproét is 
the condensed animated set

Πcond(X) def= lim
U•∈HC(X)

|π0(U•)|,

where the geometric realization and the limit are taken in the ∞-category Cond(Ani) of 
condensed anima (also called spaces, Kan complexes, or ∞-groupoids). Here we identify 
a profinite set with the associated condensed set under the Yoneda embedding.

Let HCw(X) ⊂ HC(X) denote the full subcategory consisting of hypercovers U• so 
that, for every n ≥ 0, the scheme Un is w-contractible. Since every hypercover can be 
refined by one consisting of w-contractible schemes, the inclusion HCw(X) ⊂ HC(X) is 
co-initial. In particular, the natural map

Πcond(X)
∼=−→ lim

U•∈HCw(X)
|π0(U•)|,

is an equivalence. Since covers of w-contractible qcqs objects split, all the condensed 
sets in the colimit are actually equivalent. As the category HCw is cofiltered, we get an 
equivalence of condensed anima

Πcond(X)
∼=−→ |π0(U•)|, (A.1)
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for every U• ∈ HCw(X).
For the condensed ring Λ, we define a condensed ∞-category Perfcond

Λ by the assign-
ment

Perfcond
Λ : {extremally disconnected profinite sets}op → Catperf

∞

S �→ PerfΓ(S,Λ).

Note that Perfcond
Λ , when extended to a hypersheaf on ∗proét, is simply the hypersheaf 

S �→ Dlis(S, Λ), see Lemma 4.1 and Corollary 4.7.
The category of condensed ∞-categories has a canonical enrichment over Cat∞. 

Namely, for every ∞-category K, we have the associated K ∈ Cond(Cat∞) as the 
presheaf on the category of extremally disconnected profinite sets

S = limSi �→ colimi Fun(Si,K).

Then, for condensed ∞-categories C, D, the mapping object Functs(C, D) ∈ Cat∞ is 
characterized by the existence of natural equivalences

HomCat∞
(
K,Functs(C,D)

) ∼= HomCond(Cat∞)
(
K × C,D

)

with K ∈ Cat∞. In order to simplify notation, we identify every profinite set S with 
the associated discrete condensed ∞-category. Then, for any extremally disconnected 
profinite set S, we have the equivalence

PerfΓ(S,Λ) ∼= Functs(S,Perfcond
Λ ),

using the Yoneda embedding.

Proposition A.1. Let X be a qcqs scheme and Λ a condensed ring. Then there is a canon-
ical equivalence

Dlis(X,Λ) ∼= Functs(Πcond(X),Perfcond
Λ

)
. (A.2)

Proof. Let U• ∈ HCw(X). By descent (Corollary 4.7), we have an equivalence

Dlis(X,Λ) ∼= Tot
(
PerfΓ(U•,Λ)

) ∼= Tot
(
PerfΓ(π0(U•),Λ)

)
, (A.3)

using Γ(Un, Λ) = Γ(π0(Un), Λ) for n ≥ 0. Since each Un is w-contractible qcqs, each 
profinite set π0(Un) is extremally disconnected. We get an equivalence

PerfΓ(π0(U•),Λ) ∼= Functs(π0(U•),Perfcond
Λ

)
.

Then (A.3) becomes
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Dlis(X,Λ) ∼= Tot
(
Functs(π0(U•),Perfcond

Λ
)) ∼= Functs(|π0(U•)|,Perfcond

Λ
)
.

This construction is functorial in U• and gives a canonical equivalence

Dlis(X,Λ) ∼= Functs(Πcond(X),Perfcond
Λ

)
. �

This proposition allows us to draw direct connections between functors from the con-
densed shape and more familiar versions when one restricts the possible class of rings. 
First, if Λ is finite and discrete, then profinite shape theory in the sense of [29, Ap-
pendix E] gives an equivalence:

Dlis(X,Λ) ∼= Fun(Πproét(X),PerfΛ),

where Πproét(X) denotes the profinite shape of the topos Xproét. Namely, the profinite 
completion of the shape. Here we use Fun as in [21] to denote the category of functors 
between pro-categories. Now consider a condensed ring Λ associated to a Noetherian ring 
complete with respect to the adic topology for some ideal I ⊂ Λ with Λ/I finite. Then 
Proposition 5.1 implies

Dlis(X,Λ) ∼= lim
n

Fun(Πproét(X),PerfΛ/In) ∼= Fun(Πproét(X),PerfΛ),

where on the right hand side both arguments are considered as pro-categories.
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